Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей. Определение скоростей точек тела плоской фигуры Как определить скорость любой точки плоской фигуры

Просмотр: эта статья прочитана 11766 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Плоскопараллельным или плоским движением твердого тела называется движение, при котором все точки тела движутся в плоскостях, которые параллельны некоторой недвижимой плоскости (базовой).

Изучение плоского движения абсолютно твердого тела сведится к изучению одного сечения плоской фигуры, которое определяется движением трех точек, которые не лежат на одной прямой.

Задав угол поворота тела вокруг прямой, которая проходит через полюс А перпендикулярно к плоскости сечения, получим закон плоскопаралельного движения

Плоскопараллельное движение твердого тела состоит из поступательного,при котором точки тела движутся вместе с полюсом, и вращательного вокруг полюса.

Основные кинематические характеристики плоского движения тела:

  • скорость и ускорение поступательного движения полюса,
  • угловая скорость и угловое ускорение вращательного движения вокруг полюса.

Траектория произвольной точки плоской фигуры определяется расстоянием от точки до полюса А и углом вращения вокруг полюса.

Определение скоростей точек плоской фигуры

Скорость произвольной точки равна геометрической сумме скорости точки, которая принята за полюс, и вращательной скорости данной точки в ее вращательном движении вместе с телом вокруг полюса.

Модуль и направление скорости находится построением соответствующего параллелограмма.

Мгновенный центр скоростей (МЦС)

Мгновенный центр скоростей (МЦС) - точка, скорость которой в данный момент времени равна нулю. МЦС рассматривают в качестве полюса.

  1. Скорость произвольной точки тела, которая принадлежит плоской фигуре, равняется ее вращательной скорости вокруг мгновенного центра скоростей. Модуль скорости произвольной точки А равняется произведению угловой скорости тела на длину отрезка от точки до МЦС. Вектор направлен перпендикулярно к отрезку от точки до МЦС в направлении вращения тела
  2. Модули скоростей точек тела пропорциональны их расстояниям до МЦС

Случаи определения мгновенного центра скоростей

  1. Если известны скорость одной точки тела, угловая скорость вращения тела, то для нахождения МЦС (Р) необходимо повернуть вектор скорости точки в сторону вращения на 90 0 и на найденном луче отложить отрезок АР
  2. Если скорости двух точек тела параллельны и перпендикулярны прямой, которая проходит через эти точки, то МЦС находится в точке пересечения этой прямой и прямой, которая соединяет концы векторов скоростей
  3. Если известны направления скоростей двух точек тела и их направления не параллельны, то МЦС находится в точке Р пересечения перпендикуляров, проведенных к скоростям в этих точках
  4. Если колесо катится по недвижимой поверхности без скольжения, то МЦС (Р) находится в точке соприкосновения колеса с недвижимой поверхностью

В случаях 2 и 3 возможные исключения (мгновенно поступательное движение или мгновенный покой).

Сложное движение точки

Сложное движение точки - движение, при котором точка одновременно принимает участие в нескольких движениях.

Относительное движение - движение относительно подвижной системы отсчета.

Переносное движение - движениет подвижной системы отчета (переносящей среды) вместе с точкой относительно неподвижной системы отсчета.

Абсолютное движение - движение точки относительно недвижимой системы отсчета
Абсолютное движение точки является сложным движением, т.к. состоит из относительного и переносного движений.

При сложном движении абсолютная скорость точки равняется геометрической сумме ее относительной и переносной скоростей

Определение ускорений точки

Абсолютное ускорение точки равняется геометрической сумме трех векторов: относительного ускорения, характеризующего изменение относительной скорости в относительном движении; переносного ускорения, характеризующего изменение переносной скорости точки в переносном движении, и ускорения Кориолиса, характеризующего изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении.

Ускорением Кориолиса точки называется двойное векторное произведение угловой скорости переносящей среды и относительной скорости точки.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

Скорость произвольной точки М фигуры определим как сумма скоростей, которые точка получает при поступательном движении вместе с полюсом и вращательном движении вокруг полюса.

Представим положение точки М как (рис.1.6).

Продифференцировав это выражение по времени получим:

, т.к.

.

При этом скорость v MA . которую точка М получает при вращении фигуры вокруг полюса А , будет определяться из выражения

v MA =ω ·MA ,

где ω - угловая скорость плоской фигуры.

Скорость любой точки М плоской фигуры геометрически складывается из скорости точки А , принятой за полюс, и скорости, точки М при вращении фигуры вокруг полюса. Модуль и направление скорости этой скорости находятся построением параллелограмма скоростей.

Задача 1

Определить скорость точки А, если скорость центра катка равна 5м/с, угловая скорость катка . Радиус катка r=0,2м, угол . Каток катиться без скольжения.

Так как тело совершает плоскопараллельное движение, то скорость точки А будет состоять из скорости полюса (точка С ) и скорости полученной точкой А при вращении вокруг полюса С .

,

Ответ:

Теорема о проекциях скоростей двух точек тела, движущего плоскопараллельно

Рассмотрим какие-нибудь две точки А и В плоской фигуры. Принимая точку А за полюс (рис.1.7), получаем

Отсюда, проецируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендикулярен АВ , находим

v B ·cosβ =v A ·cosα+ v В A ·cos90° .

т.к. v В A ·cos90°=0 получаем: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны.

Задача 1

Стержень АВ скользит по гладкой стене вниз и гладкому полу, скорость точки A V A =5м/с, угол между полом и стержнем АВ равен 30 0 . Определить скорость точки В.


Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

При определении скоростей точек плоской фигуры через скорость полюса, скорость полюса и скорость вращательного движения вокруг полюса могут быть равны по величине и противоположны по направлению и существует такая точка Р, скорость которой в данный момент времени равна нулю , называют ее мгновенным центром скоростей.

Мгновенным центром скоростей называется точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю.

Скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было мгновенно вращательным вокруг оси проходящей через мгновенный центр скоростей (рис. 1.8).

v A =ω ·PA ; ().

Т.к. v B =ω ·PB ; (), то w= v B /PB =v A /PA

Скорости точек плоской фигуры пропорциональны кратчайшим расстояниям от этих точек до мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1) для определения положения мгновенного центра скоростей надо знать величину и направления скорости и направление скорости каких-нибудь двух точек А и В плоской фигуры; мгновенный центр скоростей P находится в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек;

2) угловая скорость ω плоской фигуры в данный момент времени равна отношению скорости к расстоянию от нее до мгновенного центра Р скоростей: ω =v А /;

3) Скорость точки по отношению к мгновенному центру скоростей P укажет направление угловой скорости w.

4) Величина скорости точки прямопропорциональна кратчайшему расстоянию от точки В к мгновенному центру скоростей Р v А = ω·ВР

Задача 1

Кривошип ОА длиной 0,2м вращается равномерно с угловой скоростью ω=8 рад/с . К шатуну АВ в точке С шарнирно прикреплен шатун CD. Для заданного положения механизма определить скорость точки D ползуна, если угол .

Движение точки В ограничено горизонтальными направляющими, ползун может совершать только поступательное движение по горизонтальным направляющим. Скорость точки В направлена в туже сторону что и . Так как две точки шатуна имеют одинаковое направление скоростей, то тело совершает мгновенно поступательное движение, и скорости всех точек шатуна имеют одинаковое направление и значение.

Движение плоской фигуры слагается из поступательного движения, когда все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса (рис. 3.4). Скорость любой точкиМ фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

Рисунок 3.4

Действительно, положение точки М по отношению к осямОх y определяется радиусом – вектором
, где- радиус-вектор полюсаА ,=
- радиус-вектор, определяющий положение точкиМ относительно
, перемещающихся вместе с полюсомА поступательно. Тогда

.

есть скорость полюсаА ,равна скорости
, которую точкаМ получает при
, т.е. относительно осей
, или, иначе, при вращении фигуры вокруг полюсаА . Таким образом следует, что

где ω – угловая скорость фигуры.

Рисунок 3.5

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скоростинаходятся построением соответствующего параллелограмма (рис. 3.5).

10.3. Теорема о проекциях скоростей двух точек тела

Одним из простых способов определения скоростей точек плоской фигуры (или тела движущегося плоскопараллельно) является теорема: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.

Рисунок 3.6

Рассмотрим какие-нибудь две точки А иВ плоской фигуры (или тела) (рис.3.6). Принимая точкуА за полюс получаем, что
. Отсюда, проектируя обе части равенства на ось, направленную поАВ , и учитывая, что вектор
перпендикуляренАВ , находим

,

и теорема доказана. Заметим, что этот результат ясен и из чисто физических соображений: если равенство
не будет выполняться, то при движении расстояние между точкамиА иВ должно изменяться, что невозможно – тело абсолютно твердое. Поэтому это равенство выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

10.4. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времениt точкиА иВ плоскости фигуры имеют скоростии, непараллельные друг другу (рис. 3.7.). Тогда точкаР , лежащая на пересечении перпендикуляровАа к векторуиВ b к вектору, и будет мгновенным центром скоростей, так как
.

Рисунок 3.7

В самом деле, если
, то по теореме о проекциях скоростей вектордолжен быть одновременно перпендикулярен иАР (так как
), иВР (так как
), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точкуР за полюс. То скорость точкиА будет

,

так как =0. Такой же результат получается для любой другой точки фигуры. Тогда,скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. При этом

(
);
(
)

и так для любой точки фигуры.

Из этого следует еще, что
и
, тогда

=,

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

.

Найдем, еще другое выражение для ω из равенств
и

следует, что
и
, откуда

.

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 3.8), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (
), и следовательно, является мгновенным центром скоростей.

Рисунок 3.8

2. Если скорости точек А иВ плоской фигуры параллельны друг другу, причем линияАВ не перпендикулярна(рис.3.9,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек //. При этом из теоремы о проекциях скоростей следует, что
, т.е.
, в этом случае фигура имеет мгновенное поступательное движение.

3. Если скорости точек А иВ плоской фигуры // друг другу и при этом линияАВ перпендикулярна, то мгновенный центр скоростейР определяется построением (рис. 3.9,б).

Рисунок 3.9

Справедливость построений следует из
. В этом случае, в отличие от предыдущих, для нахождения центраР надо кроме направлений знать еще и модули скоростейи.

4. Если известны вектор скорости какой-нибудь точкиВ фигуры и её угловая скоростьω , то положение мгновенного центра скоростейР , лежащего на перпендикуляре к(см. рис. ?), можно найти из равенства
, которое дает
.

ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА

Учебные вопросы:

1.Уравнения плоского движения твердого тела.

2. Скорость точек плоской фигуры

3. Мгновенный центр скоростей

4. Ускорения точек плоской фигуры

1.Уравнения плоского движения твердого тела

Плоским движением твёрдого тела называют такое движение, при котором все точки сечения тела движутся в своей плоскости.

Пусть твёрдое тело 1 совершает плоское движение.

Секущая плоскость в теле 1 образует сечение П, которое перемещается в секущей плоскости .

Если параллельно плоскости выполнить другие сечения тела, например через точки
и т.д., лежащие на одном перпендикуляре к сечениям, то все эти точки и все сечения тела будут перемещаться одинаково.

Следовательно, движение тела в этом случае полностью определяется движением одного из его сечений в какой-либо из параллельных плоскостей, а положение сечения – положением двух точек этого сечения, например А и В .

Положение сечения П в плоскости Оху определяют положением отрезка АВ, проведённого в этом сечении. Положение двух точек на плоскости А(
) и В(
) характеризуется четырьмя параметрами (координатами), на которые накладывают одно ограничение - уравнение связи в виде длины отрезка АВ:

Поэтому положение сечения П в плоскости можно задать тремя независимыми параметрами - координатами
точки А и углом , который образует отрезок АВ с осью Ох. Точку А, выбранную для определения положения сечения П, называют ПОЛЮСОМ.

При движении сечения тела его кинематические параметры являются функциями времени

Уравнения являются кинематическими уравнениями плоского (плоскопараллельного) движения твёрдого тела. Теперь покажем, что в соответствии с полученными уравнениями тело при плоском движении совершает поступательное и вращательное движения. Пусть на рис. сечение тела, заданное отрезком
в системе координат Оху, переместилось из начального положения 1 в конечное положение 2.

Покажем два способа возможного перемещения тела из положения 1 в положение 2.

Первый способ. За полюс примем точку .Перемещаем отрезок
параллельно самому себе, т.е. поступательно, по траектории , до совмещения точек и . Получаем положение отрезка . на угол и получаем конечное положение плоской фигуры, заданное отрезком
.

Второй способ. За полюс примем точку . Перемещаем отрезок
параллельно самому себе, т.е. поступательно по траектории
до совмещения точек и.Получаем положение отрезка
. Далее поворачиваем этот отрезок вокруг полюса на угол и получаем конечное положение плоской фигуры, заданное отрезком
.

Сделаем следующие выводы.

1. Плоское движение в полном соответствии с уравнениями представляет собой совокупность поступательного и вращательного движений, причем модель плоского движения тела можно рассматривать как поступательное движение всех точек тела вместе с полюсом и вращение тела относительно полюса.

2. Траектории поступательного движения тела зависят от выбора полюса . На рис. 13.3 в рассмотренном случае видим, что в первом способе движения, когда за полюс принимали точку,траектория поступательного движения значительно отличается от траектории
для другого полюса В.

3. Вращение тела от выбора полюса не зависит. Угол вращения тела остается постоянным по модулю и направлению вращения . В обоих случаях, рассмотренных на рис. 13.3, вращение произошло против вращения часовой стрелки.

Основными характеристиками тела при плоском движении являются: траектория движения полюса, угол вращения тела вокруг полюса, скорость и ускорения полюса, угловая скорость и угловое ускорение тела . Дополнительные оси
при поступательном движении перемещаются вместе с полюсом А параллельно основным осям Оху по траектории движения полюса.

Скорость полюса плоской фигуры можно определить с помощью производных по времени от уравнений:

Аналогично определяют угловые характеристики тела: угловую скорость
;

угловое ускорение

.

На рис. в полюсе А показаны проекции вектора скорости на оси Ох,Оу. Угол вращения тела , угловая скоростьи угловое ускорениепоказаны дуговыми стрелками вокруг точки А. В связи с независимостью вращательных характеристик движения от выбора полюса угловые характеристики ,, можно показывать в любой точке плоской фигуры дуговыми стрелками, например в точке В.

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоскости фигуры имеют скорости и , непараллельные друг другу (рис. 2.21.). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и Вb к вектору , и будет мгновенным центром скоростей, так как .

Рисунок 2.21

В самом деле, если , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ), и ВР (так как ), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точку Р за полюс. То скорость точки А будет

и так для любой точки фигуры.

Из этого следует еще, что и , тогда

= , (2.54)

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 2.22), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и следовательно, является мгновенным центром скоростей.



Рисунок 2.22

2. Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.2.23,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек // . При этом из теоремы о проекциях скоростей следует, что , т.е. , в этом случае фигура имеет мгновенное поступательное движение. , которое дает .


Top