Отраженная и поглощенная радиация. Альбедо земной поверхности и Земли в целом

Ламбертово (истинное, плоское) альбедо

Истинное или плоское альбедо - коэффициент диффузного отражения, то есть отношение светового потока , рассеянного плоским элементом поверхности во всех направлениях, к потоку, падающему на этот элемент.
В случае освещения и наблюдения, нормальных к поверхности, истинное альбедо называют нормальным .

Нормальное альбедо чистого снега составляет ~0,9, древесного угля ~0,04.

Геометрическое альбедо

Геометрическое оптическое альбедо Луны - 0,12, Земли - 0,367.

Бондовское (сферическое) альбедо


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Альбедо" в других словарях:

    АЛЬБЕДО, доля света либо другого излучения, отраженная от какой либо поверхности. У идеального отражателя альбедо равняется 1, у реальных это число меньше. Альбедо снега лежит в пределах от 0,45 до 0,90; альбедо Земли, с искусственных спутников,… … Научно-технический энциклопедический словарь

    - (араб.). Термин в фотометрии, показывающий, какую часть световых лучей данная поверхность отражает. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. альбедо (лат. albus светлый) величина, характеризующая… … Словарь иностранных слов русского языка

    АЛЬБЕДО - (позднелат. albedo, от лат. albus белый), величина, характеризующая соотношение между потоком солнечной радиации, попадающим на различные предметы, почвенным или снежный покров, и количеством такой радиации, поглощенной или отраженной ими;… … Экологический словарь

    - (от позднелат. albedo белизна) величина, характеризующая способность поверхности отражать падающий на нее поток электромагнитного излучения или частиц. Альбедо равно отношению отраженного потока к падающему. В астрономии важная характеристика… … Большой Энциклопедический словарь

    альбедо - нескл. albédo m. <лат. albedo. белизна. 1906. Лексис. Внутренний белый слой кожицы цитрусовых. Пищепром. Лекс. Брокг.: альбедо; СИС 1937: альбе/до … Исторический словарь галлицизмов русского языка

    альбедо - Характеристика отражательной способности поверхности тела; определяется отношением светового потока, отражённого (рассеянного) этой поверхностью, к световому потоку, падающему на неё [Терминологический словарь по строительству на 12 языках… … Справочник технического переводчика

    альбедо - Отношение солнечной радиации, отраженной от поверхности земли, к интенсивности радиации, падающей на нее, выражается в процентах или десятичных долях (среднее альбедо Земли равно 33%, или 0,33). → Рис. 5 … Словарь по географии

    - (от позднелат. albedo белизна), величина, характеризующая способность поверхности к. л. тела отражать (рассеивать) падающее на неё излучение. Различают истинное, или ламбертово, А., совпадающее с коэфф. диффузного (рассеянного) отражения, и… … Физическая энциклопедия

    Сущ., кол во синонимов: 1 характеристика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Величина, характеризующая отражательную способность любой поверхности; выражается отношением радиации, отражаемой поверхностью, к солнечной радиации, поступившей на поверхность (у чернозема 0,15; песка 0,3 0,4; среднее А. Земли 0,39; Луны 0,07)… … Словарь бизнес-терминов

Долгосрочный тренд альбедо направлен в сторону похолодания. За последние годы спутниковые измерения показывают незначительный тренд.

Изменение альбедо Земли потенциально является мощным воздействием на климат. Когда альбедо, или отражающая способность, возрастает, больше солнечного света отражается назад в космос. Это оказывает охлаждающее действие на глобальные температуры. Напротив, снижение альбедо нагревает планету. Изменение альбедо всего на 1% дает радиационный эффект 3,4 Вт/м2, сопоставимый с эффектом удвоения СО2. Как же альбедо воздействовало на глобальные температуры в последние десятилетия?

Тренды альбедо до 2000 года

Альбедо Земли определяется несколькими факторами. Снег и лед хорошо отражают свет, так что когда они тают, альбедо понижается. Леса имеют более низкое альбедо, чем открытые пространства, поэтому сведение лесов повышает альбедо (оговоримся, что уничтожение всех лесов не остановит глобальное потепление). Аэрозоли имеют прямое и косвенное влияние на альбедо. Прямым влиянием является отражение солнечного света в космос. Непрямой эффект состоит в действии частиц аэрозолей в качестве центров конденсации влаги, что затрагивает формирование и время жизни облаков. Облака, в свою очередь, влияют на глобальные температуры несколькими способами. Они охлаждают климат за счет отражения солнечного света, но также могут давать эффект нагрева, удерживая исходящее инфракрасное излучение.

Все эти факторы следует учитывать при суммировании различных радиационных воздействий, определяющих климат. Изменения в землепользовании вычисляются исходя из исторических реконструкций изменения состава пахотных земель и пастбищ. Наблюдения со спутников и с земли позволяют определять тренды уровня аэрозолей и альбедо облаков. Можно видеть, что альбедо облаков является самым сильным фактором из различных видов альбедо. Долгосрочный тренд направлен в сторону похолодания, воздействие -0,7Вт/м2 с 1850 по 2000 г.

Рис.1 Среднегодовые общие радиационные воздействия (Chapter 2 of the IPCC AR4) .

Тренды альбедо после 2000 года.

Одним из способов измерения альбедо Земли является пепельный свет Луны. Это солнечный свет, сначала отраженный Землей, а затем отраженный Луной обратно к Земле в ночное время. Пепельный свет Луны измеряется солнечной обсерваторией Big Bear с ноября 1998 года (был также сделан ряд измерений в 1994 и 1995 годах). Рис.2 показывает изменения альбедо по реконструкции спутниковых данных (черная линия) и по измерениям пепельного света Луны (синяя линия) (Palle 2004) .


Рис.2 Изменения альбедо, реконструированные по спутниковым данным ISCCP (черная линия) и по изменениям пепельного света Луны (снняя линия). Правая вертикальная шкала показывает негативное радиационное воздействие (т.е. на охлаждение) (Palle 2004).

Данные на Рис.2 проблематичны. Черная линия, реконструкция спутниковых данных ISCCP "является чисто статистическим параметром и имеет мало физического смысла, поскольку она не учитывает нелинейных отношений между свойствами облаков и поверхности и планетарным альбедо, а также не включает аэрозольных изменений альбедо, например, связанных с вулканом Пинатубо или антропогенной эмиссией сульфатов " (Real Climate).

Еще более проблематическим является пик альбедо около 2003 года, видимый на синей линии пепельного света Луны. Он сильно противоречит спутниковым данным, показывающим в это время незначительный тренд. Для сравнения можно вспомнить извержение Пинатубо в 1991 году, заполнившее атмосферу аэрозолями. Эти аэрозоли отражали солнечный свет, создав отрицательное радиационное воздействие 2,5 Вт/м2. Это резко снизило глобальную температуру. Данные пепельного света тогда показывали воздействие почти -6 Вт/м2, что должно было означать еще большее падение температуры. Никаких похожих событий не произошло в 2003 году. (Wielicki 2007).

В 2008 году была обнаружена причина несоответствия. Обсерватория Big Bear установила новый телескоп для измерения пепельного света Луны в 2004 году. С новыми улучшенными данными они заново откалибровали свои старые данные и пересмотрели свои оценки альбедо (Palle 2008). Рис. 3 показывает старые (черная линия) и обновленные (синяя линия) значения альбедо. Аномальный пик 2003 года исчез. Впрочем, тренд повышения альбедо с 1999 по 2003 год сохранился.


Рис. 3 Изменение альбедо Земли по данным замеров пепельного света Луны. Черная линия - изменения альбедо по публикации 2004 года (Palle 2004). Синяя линия - обновленные изменения альбедо после улучшения процедуры анализа данных, также включены данные за больший период времени (Palle 2008).

Насколько точно определяется альбедо по пепельному свету Луны? Метод не является глобальным по охвату. Он затрагивает примерно треть Земли в каждом наблюдении, некоторые области всегда остаются "невидимыми" с места наблюдений. Кроме того, измерения нечасты, они делаются в узком диапазоне длин волн 0,4-0,7 µm (Bender 2006).

В отличие от этого спутниковые данные, такие как CERES, являются глобальным измерением коротковолнового излучения Земли, включают все эффекты свойств поверхности и атмосферы. По сравнению с измерениями пепельного света, они покрывают более широкий диапазон (0.3-5.0 µm). Анализ данных CERES показывает отсутствие долгосрочного тренда альбедо с марта 2000 по июнь 2005 года. Сравнение с тремя независимыми наборами данных (MODIS, MISR и SeaWiFS) демонстрирует "замечательное соответствие" всех 4-х результатов (Loeb 2007a).


Рис. 4 Месячные изменения средних значений CERES SW TOA flux and MODIS cloud fraction ().

Альбедо воздействовало на глобальные температуры - в основном в сторону похолодания в долгосрочной тенденции. Что касается недавних трендов, данные пепельного света показывают рост альбедо с 1999 по 2003 год с незначительным изменениями после 2003 года. Спутники показывают незначительные изменения с 2000 года. Радиационное воздействие от изменений альбедо в последние годы минимальное.

Суммарная солнечная радиация, приходя­щая на земную поверхность, частично от нее отражается и теряется ею - это отражен­ная радиация (R k), она составляет около 3 % от всей солнечной радиации. Оставшаяся ра­диация поглощается верхним слоем почвы или воды и называется поглощенной радиацией (47 %). Она служит источником энергии всех движений и процессов в атмосфере. Величи­на отражения и соответственно поглощения солнечной радиации зависит от отражательной способности поверхности, или альбедо. Аль­бедо поверхности - это отношение отра­женной радиации к суммарной радиации, вы­раженное в долях от единицы или в процен­тах: А=R k /Q∙100 % .Отраженная радиация выражается формулой R k =Q∙A, оставшаяся поглощенная -Q–R k или (Q·(1–А), где 1– А – коэффициент поглощения, причем А рассчитывается в долях от единицы.


Альбедо земной поверхности зависит от ее свойств и состояния (цвета, влажности, ше­роховатости и т. д.) и изменяется в больших пределах, особенно в умеренных и субполяр­ных широтах в связи со сменой сезонов года. Наиболее высокое альбедо у свежевыпавше­го снега - 80-90 %, у сухого светлого пес­ка - 40 %, у растительности - 10-25 %, у влажного чернозема - 5 %. В полярных об­ластях высокое альбедо снега сводит на нет преимущество больших величин суммарной ра­диации, получаемых в летнее полугодие. Аль­бедо водных поверхностей в среднем меньше, чем суши, так как в воде лучи глубже прони­кают в верхние слои, чем в почвогрунтах, рас­сеиваются там и поглощаются. При этом на альбедо воды большое влияние оказывает угол падения солнечных лучей: чем он меньше, тем больше отражательная способность. При от­весном падении лучей альбедо воды составля-

ет 2- 5 %, при малых углах - до 70 %. В целом альбедо поверхности Мирового оке­ана составляет менее 20 %, так что вода по­глощает до 80 % суммарной солнечной ради­ации, являясь мощным аккумулятором тепла на Земле.

Интересно также распределение альбедо на различных широтах земного шара и в разные сезоны.

Альбедо в целом увеличивается от низких широт к высоким, что связано с возрастаю­щей облачностью над ними, снежной и ледя­ной поверхностью полярных областей и умень­шением угла падения солнечных лучей. При этом видны локальный максимум альбедо в экваториальных широтах вследствие большой


облачности и минимумы в тропических широ­тах с их минимальной облачностью.

Сезонные вариации альбедо в северном (материковом) полушарии значительнее, не­жели в южном, что обусловлено более ост­рой реакцией его на сезонные изменения при­роды. Это особенно заметно в умеренных и субполярных широтах, где летом альбедо по­нижено из-за зеленой растительности, а зи­мой повышено за счет снежного покрова.

Планетарное альбедо Земли - отношение уходящей в Космос «неиспользованной» ко­ротковолновой радиации (всей отраженной и части рассеянной) к общему количеству сол­нечной радиации, поступающей на Землю. Оно оценивается в 30 %.

Поверхность Характеристика Альбедо, %
Почвы
чернозем сухой, ровная поверхность свежевспаханный, влажный
суглинистая сухая влажная
песчаная желтоватая белесая речной песок 34 – 40
Растительный покров
рожь, пшеница в период полной спелости 22 – 25
пойменный луг с сочной зеленой травой 21 – 25
трава сухая
лес еловый 9 – 12
сосновый 13 – 15
березовый 14 – 17
Снежный покров
снег сухой свежевыпавший влажный чистый мелкозернистый влажный пропитан водой, серый 85 – 95 55 – 63 40 – 60 29 – 48
лед речной голубовато-зелёный 35 – 40
морской молочно-голубой цв.
Водная поверхность
при высоте Солнца 0,1° 0,5° 10° 20° 30° 40° 50° 60-90° 89,6 58,6 35,0 13,6 6,2 3,5 2,5 2,2 – 2,1

Преобладающая часть прямой радиации, отраженной земной по­верхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство около одной трети рассеянной радиации. Отношение всей уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного аль­бедо Земли. Планетарное альбедо Земли оценивается в 35 – 40 %. Основную его часть составляет отражение солнечной радиации облаками.

Таблица 2.6

Зависимость величины К н от широты места и времени года

Широта Месяцы
III IV V VI VII VIII IX X
0.77 0.76 0.75 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.77 0.76 0.76 0.77 0.78 0.81
0.80 0.77 0.77 0.76 0.76 0.77 0.79 0.82
0.80 0.78 0.77 0.77 0.77 0.78 0.79 0.83
0.81 0.78 0.77 0.77 0.77 0.78 0.80 0.83
0.82 0.78 0.78 0.77 0.77 0.78 0.80 0.84
0.82 0.79 0.78 0.77 0.77 0.78 0.81 0.85
0.83 0.79 0.78 0.77 0.77 0.79 0.82 0.86

Таблица 2.7

Зависимость величины К в+с от широты места и времени года

(по А.П. Браславскому и З.А. Викулиной)

Широта Месяцы
III IV V VI VII VIII IX X
0.46 0.42 0.38 0.37 0.38 0.40 0.44 0.49
0.47 0.42 0.39 0.38 0.39 0.41 0.45 0.50
0.48 0.43 0.40 0.39 0.40 0.42 0.46 0.51
0.49 0.44 0.41 0.39 0.40 0.43 0.47 0.52
0.50 0.45 0.41 0.40 0.41 0.43 0.48 0.53
0.51 0.46 0.42 0.41 0.42 0.44 0.49 0.54
0.52 0.47 0.43 0.42 0.43 0.45 0.50 0.54
0.52 0.47 0.44 0.43 0.43 0.46 0.51 0.55
0.53 0.48 0.45 0.44 0.44 0.47 0.51 0.56
0.54 0.49 0.46 0.45 0.45 0.48 0.52 0.57
0.55 0.50 0.47 0.46 0.46 0.48 0.53 0.58
0.56 0.51 0.48 0.46 0.47 0.49 0.54 0.59
0.57 0.52 0.48 0.47 0.47 0.50 0.55 0.60
0.58 0.53 0.49 0.48 0.48 0.51 0.56 0.60

Top