Как решить неполное неравенство. Квадратные неравенства

Квадратное неравенство – «ОТ и ДО». В этой статье мы с вами рассмотрим решение квадратных неравенств что называется до тонкостей. Изучать материал статьи рекомендую внимательно ничего не пропуская. Осилить статью сразу не получится, рекомендую сделать это за несколько подходов, информации много.

Содержание:

Вступление. Важно!


Вступление. Важно!

Квадратное неравенство – это неравенство вида:

Если взять квадратное уравнение и заменить знак равенства на любой из указанных выше, то получится квадратное неравенство. Решить неравенство - это значит ответить на вопрос, при каких значениях х данное неравенство будет верно. Примеры:

10 x 2 – 6 x +12 ≤ 0

2 x 2 + 5 x –500 > 0

– 15 x 2 – 2 x +13 > 0

8 x 2 – 15 x +45≠ 0

Квадратное неравенство может быть задано в неявном виде, например:

10 x 2 – 6 x +14 x 2 –5 x +2≤ 56

2 x 2 > 36

8 x 2 <–15 x 2 – 2 x +13

0> – 15 x 2 – 2 x +13

В этом случае необходимо выполнить алгебраические преобразования и привести его к стандартному виду (1).

*Коэффициенты могут быть и дробными и иррациональными, но в школьной программе такие примеры редкость, а в заданиях ЕГЭ не встречаются вообще. Но вы не пугайтесь, если, например, встретите:

Это тоже квадратное неравенство.

Сначала рассмотрим простой алгоритм решения, не требующий понимания того, что такое квадратичная функция и как её график выглядит на координатной плоскости относительно осей координат. Если вы способны запоминать информацию крепко и надолго, при этом регулярно подкрепляете её практикой, то алгоритм вам поможет. Так же если вам, как говорится, нужно решить такое неравенство «наразок», то алгоритм вам в помощь. Следуя ему вы без труда осуществите решение.

Если же вы учитесь в школе, то настоятельно рекомендую вам начать изучение статьи со второй части, где рассказывается весь смысл решения (смотрите ниже с пункта – ). Если будет понимание сути, то не учить, не запоминать указанный алгоритм будет не нужно, вы без труда быстро решите любое квадратное неравенство.

Конечно, следовало бы сразу начать разъяснение именно с графика квадратичной функции и oбъяснения самого смысла, но решил «построить» статью именно так.

Ещё один теоретический момент! Посмотрите формулу разложения квадратного трёхчлена на множители:

где х 1 и х 2 — корни квадратного уравнения ax 2 + bx +c=0

*Для того, чтобы решить квадратное неравенство, необходимо будет квадратный трёхчлен разложить на множители.

Представленный ниже алгоритм называют ещё методом интервалов. Он подходит для решения неравенств вида f (x )>0, f (x )<0 , f (x )≥0 и f (x )≤0 . Обратите внимание, что множителей может более двух, например:

(х–10)(х+5)(х–1)(х+104)(х+6)(х–1)<0

Алгоритм решения. Метод интервалов. Примеры.

Дано неравенство ax 2 + bx + с > 0 (знак любой).

1. Записываем квадратное уравнение ax 2 + bx + с = 0 и решаем его. Получаем х 1 и х 2 – корни квадратного уравнения.

2. Подставляем в формулу (2) коэффициент a и корни. :

a (x x 1 )(x x 2)>0

3. Определяем интервалы на числовой прямой (корни уравнения делят числовую ось на интервалы):

4. Определяем «знаки» на интервалах (+ или –) путём подстановки произвольного значения «х» из каждого полученного интервала в выражение:

a (x x 1 )(x x 2)

и отмечаем их.

5. Остаётся лишь выписать интересующие нас интервалы, они отмечены:

— знаком «+», если в неравенстве стояло «>0» или «≥0».

— знаком «–», если в неравенстве было «<0» или «≤0».

ОБРАТИТЕ ВНИМАНИЕ!!! Сами знаки в неравенстве могут быть:

строгими – это «>», «<» и нестрогими – это «≥», «≤».

Как это влияет на результат решения?

При строгих знаках неравенства границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде (x 1 ; x 2 ) – скобки круглые.

При нестрогих знаках неравенства границы интервала ВХОДЯТ в решение, и ответ записывается в виде [x 1 ; x 2 ] – скобки квадратные.

*Это касается не только квадратных неравенств. Квадратная скобка означает, что сама граница интервала включена в решение.

На примерах вы это увидите. Давайте разберём несколько, чтобы снять все вопросы по этому поводу. В теории алгоритм может показаться несколько сложным, на самом деле всё просто.

ПРИМЕР 1: Решить x 2 – 60 x +500 ≤ 0

Решаем квадратное уравнение x 2 –60 x +500=0

D = b 2 –4 ac = (–60) 2 –4∙1∙500 = 3600–2000 = 1600

Находим корни:


Подставляем коэффициент a

x 2 –60 x +500 = (х–50)(х–10)

Записываем неравенство в виде (х–50)(х–10) ≤ 0

Корни уравнения делят числовую ось на интервалы. Покажем их на числовой прямой:

Мы получили три интервала (–∞;10), (10;50) и (50;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–50)(х–10) произвольных значений их каждого полученного интервала и смотрим соответствие полученного «знака» знаку в неравенстве (х–50)(х–10) ≤ 0 :

при х=2 (х–50)(х–10) = 384 > 0 неверно

при х=20 (х–50)(х–10) = –300 < 0 верно

при х=60 (х–50)(х–10) = 500 > 0 неверно

Решением будет являться интервал .

При всех значениях х из этого интервала неравенство будет верным.

*Обратите внимание, что мы поставили квадратные скобки.

При х = 10 и х = 50 неравенство также будет верно, то есть границы входят в решение.

Ответ: x∊

Ещё раз:

— Границы интервала ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак ≤ или ≥ (нестрогое неравенство). При этом на эскизе принято полученные корни отображать ЗАШТРИШОВАННЫМ кружком.

— Границы интервала НЕ ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак < или > (строгое неравенство). При этом на эскизе принято корень отображать НЕЗАШТРИХОВАННЫМ кружком.

ПРИМЕР 2: Решить x 2 + 4 x –21 > 0

Решаем квадратное уравнение x 2 + 4 x –21 = 0

D = b 2 –4 ac = 4 2 –4∙1∙(–21) =16+84 = 100

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 + 4 x –21 = (х–3)(х+7)

Записываем неравенство в виде (х–3)(х+7) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим их на числовой прямой:

*Неравенство нестрогое, поэтому обозначения корней НЕзаштрихованы. Получили три интервала (–∞;–7), (–7;3) и (3;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–3)(х+7) произвольных значений их этих интервалов и смотрим соответствие неравенству (х–3)(х+7)> 0 :

при х= –10 (–10–3)(–10 +7) = 39 > 0 верно

при х= 0 (0–3)(0 +7) = –21 < 0 неверно

при х=10 (10–3)(10 +7) = 119 > 0 верно


Решением будут являться два интервала (–∞;–7) и (3;+∞). При всех значениях х из этих интервалов неравенство будет верным.

*Обратите внимание, что мы поставили круглые скобки. При х = 3 и х = –7 неравенство будет неверным – границы не входят в решение.

Ответ: x∊(–∞;–7) U (3;+∞)

ПРИМЕР 3: Решить x 2 –9 x –20 > 0

Решаем квадратное уравнение x 2 –9 x –20 = 0.

a = –1 b = –9 c = –20

D = b 2 –4 ac = (–9) 2 –4∙(–1)∙ (–20) =81–80 = 1.

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 –9 x –20 =–(х–(–5))(х–(–4))= –(х+5)(х+4)

Записываем неравенство в виде –(х+5)(х+4) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим на числовой прямой:

*Неравенство строгое, поэтому обозначения корней незаштрихованы. Получили три интервала (–∞;–5), (–5; –4) и (–4;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение –(х+5)(х+4) произвольных значений их этих интервалов и смотрим соответствие неравенству –(х+5)(х+4)>0 :

при х= –10 – (–10+5)(–10 +4) = –30 < 0 неверно

при х= –4,5 – (–4,5+5)(–4,5+4) = 0,25 > 0 верно

при х= 0 – (0+5)(0 +4) = –20 < 0 неверно

Решением будут являться интервал (–5;–4). При всех значениях «х» принадлежащих ему неравенство будет верным.

*Обратите внимание, что границы не входят в решение. При х = –5 и х = –4 неравенство будет неверным.

ЗАМЕЧАНИЕ!

При решении квадратного уравнения у нас может получится один корень или корней не будет вовсе, тогда при использовании данного метода вслепую могут возникнуть затруднения в определении решения.

Небольшой итог! Метод хорош и использовать его удобно, особенно если вы знакомы с квадратичной функцией и знаете свойства её графика. Если нет, то прошу ознакомиться, приступим к следующему разделу.

Использование графика квадратичной функции. Рекомендую!

Квадратичная это функция вида:

Её графиком является парабола, ветви параболы направлены вверх, либо вниз:


График может быть расположен следующим образом: может пересекать ось х в двух точках, может касаться её в одной точке (вершиной), может не пересекать. Об этом подробнее в дальнейшем.

Теперь рассмотрим этот подход на примере. Весь процесс решения состоит из трёх этапов. Решим неравенство x 2 +2 x –8 >0.

Первый этап

Решаем уравнение x 2 +2 x –8=0.

D = b 2 –4 ac = 2 2 –4∙1∙(–8) = 4+32 = 36

Находим корни:

Получили х 1 =2 и х 2 = – 4.

Второй этап

Строим параболу у= x 2 +2 x –8 по точкам:


Точки – 4 и 2 это точки пересечения параболы и оси ох. Всё просто! Что сделали? Мы решили квадратное уравнение x 2 +2 x –8=0. Посмотрите его запись в таком виде:

0 = x 2 +2x – 8

Ноль у нас это значение «у». При у = 0, мы получаем абсциссы точек пересечения параболы с осью ох. Можно сказать, что нулевое значение «у» это есть ось ох.

Теперь посмотрите при каких значениях х выражение x 2 +2 x – 8 больше (или меньше) нуля? По графику параболы это определить несложно, как говорится, всё на виду:

1. При х < – 4 ветвь параболы лежит выше оси ох. То есть при указанных х трёхчлен x 2 +2 x –8 будет положительным.

2. При –4 < х < 2 график ниже оси ох. При этих х трёхчлен x 2 +2 x –8 будет отрицательным.

3. При х > 2 ветвь параболы лежит выше оси ох. При указанных х трёхчлен x 2 +2 x –8 будет положительным.

Третий этап

По параболе нам сразу видно, при каких х выражение x 2 +2 x –8 больше нуля, равно нулю, меньше нуля. В этом заключается суть третьего этапа решения, а именно увидеть и определить положительные и отрицательные области на рисунке. Сопоставляем полученный результат с исходным неравенством и записываем ответ. В нашем примере необходимо определить все значения х при которых выражение x 2 +2 x –8 больше нуля. Мы это сделали во втором этапе.

Остаётся записать ответ.

Ответ: x∊(–∞;–4) U (2;∞).

Подведём итог: вычислив в первом шаге корни уравнения, мы можем отметить полученные точки на оси ох (это точки пересечения параболы с осью ох). Далее схематично строим параболу и уже можем увидеть решение. Почему схематично? Математически точный график нам не нужен. Да и представьте, например, если корни получатся 10 и 1500, попробуй-ка построй точный график на листе в клетку с таким разбегом значений. Возникает вопрос! Ну получили мы корни, ну отметили их на оси ох, а зарисовать расположение самой парабола – ветвями вверх или вниз? Тут всё просто! Коэффициент при х 2 вам подскажет:

— если он больше нуля, то ветви параболы направлены вверх.

— если меньше нуля, то ветви параболы направлены вниз.

В нашем примере он равен единице, то есть положителен.

*Примечание! Если в неравенстве будет стоять знак нестрогий, то есть ≤ или ≥, то корни на числовой прямой следует заштриховать, этим условно обозначается, что сама граница интервала входит в решение неравенства. В данном случае корни не заштрихованы (выколоты), так как неравенство у нас строгое (стоит знак «>»). При чем в ответе, в данном случае, ставятся круглые скобки, а не квадратные (границы не входят в решение).

Написано много, кого-то запутал, наверное. Но если вы решите минимум 5 неравенств с использованием парабол, то восхищению вашему предела не будет. Всё просто!

Итак, кратко:

1. Записываем неравенство, приводим к стандартному.

2. Записываем квадратное уравнение и решаем его.

3. Рисуем ось ох, отмечаем полученные корни, схематично рисуем параболу, ветвями вверх, если коэффициент при х 2 положителен, или ветвями вниз, если он отрицателен.

4. Определяем визуально положительные или отрицательные области и записываем ответ по исходному неравенству.

Рассмотрим примеры.

ПРИМЕР 1: Решить x 2 –15 x +50 > 0

Первый этап.

Решаем квадратное уравнение x 2 –15 x +50=0

D = b 2 –4 ac = (–15) 2 –4∙1∙50 = 225–200 = 25

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас строгое, то заштриховывать их не будем. Схематично строим параболу, расположена она ветвями вверх, так как коэффициент при х 2 положительный:

Третий этап.

Определяем визуально положительные и отрицательные области, здесь мы их отметили разными цветами для наглядности, можно этого и не делать.

Записываем ответ.

Ответ: x∊(–∞;5) U (10;∞).

*Знак U обозначает объёдинение решение. Образно можно выразиться так, решением является «этот» И « ещё этот» интервал.

ПРИМЕР 2: Решить x 2 + x +20 ≤ 0

Первый этап.

Решаем квадратное уравнение x 2 + x +20=0

D = b 2 –4 ac = 1 2 –4∙(–1)∙20 = 1+80 = 81

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас нестрогое, то заштрихуем обозначения корней. Схематично строим параболу, расположена она ветвями вниз, так как коэффициент при х 2 отрицательный (он равен –1):

Третий этап.

Определяем визуально положительные и отрицательные области. Сопоставляем с исходным неравенством (знак у нас ≤ 0). Неравенство будет верно при х ≤ – 4 и х ≥ 5.

Записываем ответ.

Ответ: x∊(–∞;–4] U ∪ или в другой записи x 1 ≤x≤x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

Делаем выводы: при a>0 и D=0

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
  • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
  • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
  • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Средний уровень

Квадратные неравенства. Исчерпывающее руководство (2019)

Чтобы разобраться, как решать квадратные уравнения, нам потребуется разобраться, что же такое квадратичная функция, и какими свойствами она обладает.

Наверняка ты задавался вопросом, зачем вообще нужна квадратичная функция? Где применим ее график (парабола)? Да стоит только оглядеться, и ты заметишь, что ежедневно в повседневной жизни сталкиваешься с ней. Замечал, как на физкультуре летит брошенный мяч? «По дуге»? Самым верным ответом будет «по параболе»! А по какой траектории движется струя в фонтане? Да, тоже по параболе! А как летит пуля или снаряд? Все верно, тоже по параболе! Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи. К примеру, под каким углом необходимо кинуть мяч, чтобы обеспечить наибольшую дальность полета? Или, где окажется снаряд, если запустить его под определенным углом? и т.д.

Квадратичная функция

Итак, давай разбираться.

К примеру, . Чему здесь равны, и? Ну, конечно, и!

А что, если, т.е. меньше нуля? Ну конечно, мы «грустим», а, значит, ветви будут направлены вниз! Давай посмотрим на графике.

На этом рисунке изображен график функции. Так как, т.е. меньше нуля, ветви параболы направлены вниз. Кроме того, ты, наверное, уже заметил, что ветви этой параболы пересекают ось, а значит, уравнение имеет 2 корня, а функция принимает как положительные и отрицательные значения!

В самом начале, когда мы давали определение квадратичной функции, было сказано, что и - некоторые числа. А могут ли они быть равны нулю? Ну конечно, могут! Даже открою еще больший секрет (который и не секрет вовсе, но упомянуть о нем стоит): на эти числа (и) вообще никакие ограничения не накладываются!

Ну что, давай посмотрим, что будет с графиками, если и равны нулю.

Как видно, графики рассматриваемых функций (и) сместились так, что их вершины находятся теперь в точке с координатами, то есть на пересечении осей и, на направлении ветвей это никак не отразилось. Таким образом, можно сделать вывод, что и отвечают за «передвижения» графика параболы по системе координат.

График функции касается оси в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения больше либо равные нулю.

Придерживаемся той же логики с графиком функции. Он касается оси x в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения меньше либо равные нулю, то есть.

Таким образом, чтобы определить знак выражения, первое, что необходимо сделать - это найти корни уравнения. Это нам очень пригодится.

Квадратное неравенство

При решении таких неравенств нам пригодятся умения определять, где квадратичная функция больше, меньше, либо равна нулю. То есть:

  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений, при котором парабола лежит выше оси.
  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений x, при котором парабола лежит ниже оси.

Если неравенства нестрогие (и), то корни (координаты пересечений параболы с осью) включаются в искомый числовой промежуток, при строгих неравенствах - исключаются.

Это все достаточно формализовано, однако не надо отчаиваться и пугаться! Сейчас разберем примеры, и все станет на свои места.

При решении квадратных неравенств будем придерживаться приведенного алгоритма, и нас ждет неизбежный успех!

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства «=»).
2) Найдем корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий « » или « », в зависимости от знака неравенства. Если неравенство нестрогое , корни входят в интервал, если строгое - не входят.

Разобрался? Тогда вперед закреплять!

Пример:

Ну что, получилось? Если возникли затруднения, то разбирайся в решениях.

Решение:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство нестрогое, поэтому корни включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдем корни данного квадратного уравнения:

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство строгое, поэтому корни не включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдем корни данного квадратного уравнения:

данное уравнение имеет один корень

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает неотрицательные значения. Так как неравенство нестрогое, то ответом будет.

Запишем соответсвующее квадратное уравнение:

Найдем корни данного квадратного уравнения:

Схематично нарисуем график параболы и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает положительные значения, следовательно, решением неравенства будет интервал:

КВАДРАТНЫЕ НЕРАВЕНСТВА. СРЕДНИЙ УРОВЕНЬ

Квадратичная функция.

Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет ее график.

Квадратичная функция - это функция вида,

Другими словами, это многочлен второй степени .

График квадратичной функции - парабола (помнишь, что это такое?). Ее ветви направлены вверх, если "a) функция принимает только положительные значения при всех, а во втором () - только отрицательные:

В случае, когда у уравнения () ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси:

Тогда, аналогично предыдущему случаю, при " .

Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где - меньше:

Если квадратное неравенство нестрогое , то корни входят в числовой промежуток, если строгое - не входят.

Если корень только один, - ничего страшного, будет везде один и тот же знак. Если корней нет, все зависит только от коэффициента: если "25{{x}^{2}}-30x+9

Ответы:

2) 25{{x}^{2}}-30x+9>

Корней нет, поэтому все выражение в левой части принимает знак коэффициента перед:

  • Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси.
  • Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси.

КВАДРАТНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Квадратичная функция - это функция вида: ,

График квадратичной функции - парабола. Ее ветви направлены вверх, если, и вниз, если:

Виды квадратных неравенств:

Все квадратные неравенства сводятся к следующим четырем видам:

Алгоритм решения:

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства « »).
2) Найдем корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий(ие) « » или « », в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое - не входят.

Квадратными неравенствами называют , которые можно привести к виду \(ax^2+bx+c\) \(⋁\) \(0\), где \(a\),\(b\) и \(с\) - любые числа (причем \(a≠0\)), \(x\) – неизвестная , а \(⋁\) – любой из знаков сравнения (\(>\),\(<\),\(≤\),\(≥\)).

Проще говоря, такие неравенства выглядят как , но со вместо знака равно.
Примеры:

\(x^2+2x-3>0\)
\(3x^2-x≥0\)
\((2x+5)(x-1)≤5\)

Как решать квадратные неравенства?

Квадратные неравенства обычно решают . Ниже приведен алгоритм, как решать квадратные неравенства с дискриминантом больше нуля. Решение квадратных неравенств с дискриминантом равным нулю или меньше нуля – разобраны отдельно.

Пример. Решите квадратное неравенство \(≥\) \(\frac{8}{15}\)
Решение:

\(\frac{x^2}{5}+\frac{2x}{3}\) \(≥\) \(\frac{8}{15}\)

\(D=100+4⋅3⋅8=196=14^2\)
\(x_1=\frac{-10-14}{6}=-4\) \(x_2=\frac{-10+14}{6}=\frac{2}{3}\)

Когда корни найдены, запишем неравенство в виде.

\(3(x+4)(x-\frac{2}{3})≥0\)

Теперь начертим числовую ось, отметим на ней корни и расставим знаки на интервалах.

Выпишем в ответ интересующие нас интервалы. Так как знак неравенства \(≥\), то нам нужны интервалы со знаком \(+\), при этом сами корни мы включаем в ответ (скобки на этих точках – квадратные).

Ответ : \(x∈(-∞;-4]∪[ \frac{2}{3};∞)\)

Квадратные неравенства с отрицательным и равным нулю дискриминантом

Алгоритм выше работает, когда дискриминант больше нуля, то есть имеет \(2\) корня. Что делать в остальных случаях? Например, таких:

\(1) x^2+2x+9>0\)

\(2) x^2+6x+9≤0\)

\(3)-x^2-4x-4>0\)

\(4) -x^2-64<0\)

\(D=4-36=-32<0\)

\(D=-4 \cdot 64<0\)


Если \(D<0\), то квадратный трехчлен имеет постоянный знак, совпадающий со знаком коэффициента \(a\) (тем, что стоит перед \(x^2\)).

То есть, выражение:
\(x^2+2x+9\) – положительно при любых \(x\), т.к. \(a=1>0\)
\(-x^2-64\) - отрицательно при любых \(x\), т.к. \(a=-1<0\)


Если \(D=0\), то квадратный трехчлен при одном значении \(x\) равен нулю, а при всех остальных имеет постоянный знак, который совпадает со знаком коэффициента \(a\).

То есть, выражение:
\(x^2+6x+9\) - равно нулю при \(x=-3\) и положительно при всех остальных иксах, т.к. \(a=1>0\)
\(-x^2-4x-4\) - равно нулю при \(x=-2\) и отрицательно при всех остальных, т.к. \(a=-1<0\).


Как найти икс, при котором квадратный трехчлен равен нулю? Нужно решить соответствующее квадратное уравнение.

С учетом этой информации давайте решим квадратные неравенства:

1) \(x^2+2x+9>0\)
\(D=4-36=-32<0\)

Неравенство, можно сказать, задает нам вопрос: «при каких \(x\) выражение слева больше нуля?». Выше мы уже выяснили, что при любых. В ответе можно так и написать: «при любых \(x\)», но лучше туже самую мысль, выразить на языке математики.

Ответ: \(x∈(-∞;∞)\)

2) \(x^2+6x+9≤0\)
\(D=36-36=0\)

Вопрос от неравенства: «при каких \(x\) выражение слева меньше или равно нулю?» Меньше нуля оно быть не может, а вот равно нулю – вполне. И чтобы выяснить при каком иске это произойдет, решим соответствующие квадратное уравнение.

Давайте соберем наше выражение по \(a^2+2ab+b^2=(a+b)^2\).

Сейчас нам мешает только квадрат. Давайте вместе подумаем - какое число в квадрате равно нулю? Ноль! Значит, квадрат выражения равен нулю только если само выражение равно нулю.

\(x+3=0\)
\(x=-3\)

Это число и будет ответом.

Ответ: \(-3\)

3)\(-x^2-4x-4>0\)
\(D=16-16=0\)

Когда выражение слева больше нуля?

Как выше уже было сказано выражение слева либо отрицательно, либо равно нулю, положительным оно быть не может. Значит ответ – никогда. Запишем «никогда» на языке математике, с помощью символа «пустое множество» - \(∅\).

Ответ: \(x∈∅\)

4) \(-x^2-64<0\)
\(D=-4 \cdot 64<0\)

Когда выражение слева меньше нуля?

Всегда. Значит неравенство выполняется при любых \(x\).

Ответ: \(x∈(-∞;∞)\)


Top