Коротко о формировании рефлексов у рыб. Старт в науке

Гениальный русский физиолог Иван Петрович Павлов сформулировал понятие о рефлексах и создал целое учение. Мы воспользуемся его выводами и затем попытаемся сформировать условный рефлекс у рыбок.


Безусловные рефлексы - наследственно передаваемые (врожденные) реакции организма, присущие всему виду.

Условный рефлекс – это выработанная в процессе развития реакция организма на раздражитель. Безусловные рефлексы являются основным врожденным фундаментом в поведении животного, который обеспечивает возможность нормального существования животного. Однако по мере развития животное приобретает все большее и большее количество индивидуально приобретенных актов поведения. Это и есть условные рефлексы.

Какие же условия необходимы для выработки условных рефлексов? С этим вопросом мы обратились кинтернет ресурсам.

«Первое условие образования условного рефлекса - это совпадение во времени действия ранее безразличного для раздражителя с действием какого-либо безусловного раздражителя, вызывающего определенный безусловный рефлекс.

Второе условие образования условного рефлекса состоит в том, что тот раздражитель, который превращается в условно-рефлекторный, должен несколько предшествовать действию безусловного раздражителя. При дрессировке животного команды следует давать несколько раньше, чем начинает действовать безусловно-рефлекторный раздражитель.

Например, для формирования условного рефлекса рыб надо включить лампу на 1-2 секунды раньше, чем мы будем давать корм. Если раздражитель, который должен стать условно-рефлекторным сигналом, а в нашем случае – это свет, будет даваться после безусловно-рефлекторного раздражителя, то условный рефлекс не выработается.

Третье чрезвычайно существенное условие образования условного рефлекса заключается в том, что полушария головного мозга животного должны быть во время выработки условного рефлекса свободны от других видов деятельности. При выработке условных рефлексов надо стараться исключить, по мере возможности, влияние различных посторонних раздражителей.

Четвертое условие образования условных рефлексов - это сила условного раздражителя. На слабые условные раздражители условные рефлексы вырабатываются медленно и бывают меньшей величины, чем на сильные раздражители. Однако надо иметь в виду, что чрезмерно сильные раздражители могут вызывать у рыб не развитие, а, наоборот, угасаниерефлекса. А в некоторых случаях условный рефлекс может вообще не вырабатываться.

Пятым условием образования условных рефлексов является состояние голода. Пищевой рефлекс – это безусловный рефлекс. Если условный рефлекс вырабатывается на пищевом безусловном рефлексе, необходимо, чтобы животное проголодалось; накормленная рыбка будет слабо реагировать на пищевое подкрепление, и условный рефлекс будет вырабатываться медленно.

ИЗУЧЕНИЕ ПОВЕДЕНИЯ И АДАПТАЦИИ РЫБ К ВНЕШНИМ УСЛОВИЯМ

Изучение поведения рыб - одна из важнейших задач ихтиологии и безмерное поле проведения интереснейших и увлекательнейших экспериментов и исследований. В частности, сохранение запасов ценных проходных и полупроходных рыб в связи с гидростроительством невозможно без успешного изучения поведения этих рыб на нерестилищах, в зоне плотин и рыбопропускных сооружений. Не менее важно предотвращение засасывания рыб в водозаборные сооружения. В этих целях уже используются или прошли испытания такие устройства, как пузырьковая завеса, электрорыбозаградители, механические решетки и т. д., но пока применяемые устройства не достаточно эффективны и экономичны.

Для успешного развития промысла и совершенствования орудий лова крайне важны сведения о поведении рыб в зоне облова, зависимости от гидрометеобстановки и гидрологических факторов, о суточных и периодических вертикальных и горизонтальных миграциях. При этом рациональная организация промысла не возможна без изучения распределения и поведения разновозрастных групп. Сроки и мощность миграций, подходы рыб на места нереста, нагула, зимовки во многом определяются изменениями условий внешней среды и физиологического состояния особей.

Значение органов чувств в восприятии абиотических и биотических сигналов

Изучение поведения рыб проводится на основании регулярных натурных наблюдений, экспериментов в лабораторных условиях и анализа данных о взаимодействии с внешней средой высшей нервной деятельности изучаемых объектов. В процессе взаимодействия с окружающей средой у рыб проявляются три способа ориентации:

Пеленгация - воспроизведение сигнала, идущего от внешнего мира;

Локация - посылка сигналов и восприятие их отражений;

Сигнализация - посылка сигнала одними особями и восприятие их другими.

Восприятие абиотических и биотических сигналов, влияющих на поведение рыб, происходит посредством органов чувств, среди которых выделяют прежде всего зрение, слух, боковую линию, обоняние. Особое значение имеет рефлекторная деятельность рыб.

Зрение рыб

По сравнению с воздушной средой вода, как среда обитания рыб, менее благоприятна для зрительного восприятия. Освещенность водных слоев проникающими в воду солнечными лучами находится в прямой зависимости от количества растворенных и взвешенных частиц, которые обуславливают мутность воды, определяют границы действия органов зрения рыб. В морской воде освещенность достигает глубины 200-300 м, а в пресных водоемах лишь 3-10 м. Чем глубже в воду проникает свет, тем глубже проникают и растения. Прозрачность воды чрезвычайно различна. Она больше вдали от берегов и уменьшается во внутренний морях. Чем больше в воде живых организмов, тем менее вода прозрачна. Очень прозрачные воды морей, особенно красивого насыщенного синего цвета, - это воды, скудные жизнью. Самые прозрачные моря - Саргассово и Средиземное.

Рыбы обладают цветным зрением. Для особей, обитающих в освещенной зоне, оно имеет очень большое значение и обусловливает их поведение. Питание планктонофагов, в том числе молоди рыб, осуществляется благодаря хорошо развитым органам зрения. Присущая рыбам острота зрения позволяет, в зависимости от освещенности и прозрачности воды, различать предметы на расстоянии до нескольких десятков метров. Все вышеперечисленное имеет большое значение для пищевых и оборонительных реакций рыбы. Доказано, что образование и распад стай также связаны с освещенностью водной среды.

Движение рыб против течения контролируется органами зрения, реже органами обоняния. На этом основаны попытки направить рыб в рыбоходах вслед за макетами. С освещенностью связаны ритмы и активность питания.

Явление вертикальной зональности и преобладающей окраски животных и растений обусловлено неравномерностью проникновения лучей разной длины волны в толщу воды. Животные очень часто бывают окрашены в цвет той части спектра, которая проникает на данную глубину, в результате чего приобретает защитную окраску, кажутся незаметными. В верхних горизонтах животные большей частью окрашены в буровато-зеленоватые цвета, а глубже - в красные. На больших глубинах, лишенных света, животные большей частью окрашены в черный цвет или совсем лишены окраски (депигментированы).

Слух.

Акустические свойства воды значительно сильнее, чем воздушной среды. Звуковые колебания идут быстрее и проникают дальше. Установлено, что роль звуковой сигнализации увеличивается с наступлением сумерек, по мере уменьшения зрительного восприятия. Центр звукового восприятия - внутреннее ухо рыб. Восприятие ультразвуковых колебаний рыбам не свойственно, но зато они реагируют на низкочастотные звуки. Реакция на ультразвук обнаруживается только при действии мощного источника на небольшом расстоянии и скорее может быть отнесена к болевому ощущению кожи.

При имеющей место реакции на звуковые сигналы, рыбы направленно (рефлекторно) реагируют, прежде всего, на пищевые раздражители или сигнал опасности. В черте города рыбы довольно быстро привыкают к шумам, даже к постоянным очень громким звукам. Возможно поэтому с помощью звуковых сигналов не удалось организовать направленное движение лососей в реки или отпугнуть от сточных вод. Даже вблизи аэродромов рыбы не меняют поведения и продолжают клевать на удочку. Отмечено, что прерывистый звук действует на рыб сильнее, чем постоянный.

Боковая линия

В первую очередь следует отметить функциональную связь боковой линии с органами слуха. Установлено, что нижняя часть звуковых колебаний (частоты 1-25 Гц) воспринимаются боковой линией. Значение боковой линии изучено далеко не полностью. Основной функцией боковой линии является восприятие гидродинамических полей и струй воды. Гидродинамические поля от больших источников, вызывающих у рыб оборонительную реакцию, обычно воспринимаются на значительном расстоянии. Однако в районах образования быстрых течений в реках ниже плотины многие рыбы быстро привыкают к изменившимся условиям.

Гидродинамические поля, вызываемые от движения мелких тел, обычно вызывают у рыб пищевую реакцию. Рыбы с помощью боковой линии точно ориентируются для прицельного броска на сравнительно небольшое расстояние в несколько десятков сантиметров.

С помощью боковой линии сумеречные, ночные и зарослевые хищники ориентируются, достигая добычу. Молоди рыб и планктонофагам боковая линия служит для обнаружения хищника и общей ориентации в среде.

Обоняние рыб

Следует учесть свойство воды как хорошего растворителя. Установлено, что рыбы реагируют на ничтожно малые количества растворенных в воде веществ. С помощью запахов рыбаки привлекают рыбу. В то же время другие вещества, например настойка кожи хищных рыб и морских млекопитающих, действуют отпугивающее.

Восприятие растворенных в воде веществ, по-видимому, связано с органами вкуса. Проходные рыбы находят путь из моря в реки с помощью органов обоняния. Несомненно, что рыбы способны к запоминанию. Этим объясняется хоминг (от англ. home - ≪дом≫) - способность рыб заходить именно в те реки, протоки или гирла, из которых они вышли мальками после развития из икры.

Высшая нервная деятельность и поведение рыб

Способность рыб приобретать условные рефлексы в сочетании с безусловными рефлексами дает возможность управлять их поведением. Условные рефлексы вырабатываются у рыб медленнее, чем у высших позвоночных, и быстро угасают, если не находят подкрепления теми же факторами, которые способствовали их образованию, но способны самопроизвольно возникать через определенное время.

Особую роль в создании и угасании рефлексов играет температура воды. Имеются данные (Юдкин, 1970), что у осетровых условные рефлексы осенью вырабатываются значительно хуже, чем летом. У золотой рыбки понижение температуры воды ниже +13 °С и повышение свыше +30 °С вызывало исчезновение всех ранее приобретенных рефлексов. Все это становится вполне понятно, если учесть, что жизнедеятельность рыб, животных с пониженной температурой крови, зависит от температуры воды.

Условные рефлексы могут возникать у рыб в виде подражания. Необученные рыбы подражают другим, у которых условные рефлексы образовались после соответствующего обучения или приобретения жизненного опыта. Весьма показательно в этом отношении изменение поведения рыб в зоне обловов активных и даже стационарных орудий лова. Часто достаточно одной особи, обнаружившей лазейку для выхода из орудия лова, чтобы его покинула большая часть стаи (например, хамса в ставных и закидных неводах).

Пиленгас способен преодолевать сетные порядки, переваливаясь через верхнюю подбору, выпрыгивать и даже ползти, извиваясь по наклонному полотну при выборке закидных неводов.

Летчики-наблюдатели, длительное время занимавшиеся наводкой промысловых судов на косяки рыбы, отмечали постепенное изменение поведения хамсы: изменение направления движения и выход из кошельковых неводов, ≪приседание≫, рассеивание и т.д.

Не идентичны поведение и быстрота реакций рыб при разном физиологическом состоянии. Жирная рыба быстрее образует скопления, которые усидчивее, чем образованные физиологически ослабленными особями. Часто рыбы реагируют не только на резкие изменения условий, но и на складывающиеся тенденции изменения факторов среды. При слабом же росте температуры воды скопления могут просто распасться, несмотря на то, что температура будет оставаться в пределах оптимальной для ведения промысла.

Большое значение имеет формирование рыб в стаи. Оборонительное значение стаи у рыб так же велико, как и у птиц. Также, охватывая большее водное пространство, стая быстрее находит места откорма, чем отдельные особи.

Наблюдения показали у некоторых видов рыб наличие вертикальных миграций. Так, на ньюфаундлендской банке морской окунь с заходом солнца в течение 60-90 мин поднимается с глубин 500-600 м на глубины 300-400 м. Ночью окунь держится в 200 м от поверхности, а к утру опускается и днем находится у дна. Подобным образом ведут себя треска и пикша. В Черном море вертикальные миграции наиболее свойственны хамсе и ставриде, опускающимся в нижние горизонты в дневные часы и поднимающимся к поверхности в ночные. Такое поведение их связано с движениемпланктона. Для многих рыб нахождение на разной глубине и на разном удалении от берега характерно в различные периоды жизненного цикла.

Все перечисленное имеет непосредственное отношение к поведению рыб. Это необходимо учитывать исследователю для более эффективного влияния на поведение рыб в зонах облова, где необходимо выявлять ведущие факторы для каждого конкретного случая. В настоящее время знание особенностей поведения приобретает особое значение для успешного развития промысла. И связано это, прежде всего, с увеличением интенсивности рыболовства, падением запасов и ростом экономической себестоимости выполнения работ.

Изучение особенностей поведения в зависимости от факторов среды и физиологического состояния рыб позволяет исследователям и промысловикам тактически регулировать лов с повышением его эффективности. Знание биологии промыслового объекта позволяет организовать лов в периоды максимальных концентраций, на глубинах наибольшего распределения и при температурах воды, когда скопления наиболее устойчивы. Одним из инструментов таких исследований является многофакторный Коррелятивный анализ наиболее значимых связей океанологических и биологических критериев для построения математических моделей, описывающих явления и процессы жизненного цикла рыб. Достаточно давно и хорошо на ряде бассейнов зарекомендовали себя прогнозы сроков осенних миграций, образования и распада зимовальных скоплений и начала промысла массовых промысловых рыб. Это способствует сокращению непроизводительных простоев судов и повышению уровня интенсивности лова.

В качестве примеров таких моделей можно привести рассчитанные в АзНИИРХ уравнения регрессии для прогнозирования сроков осенней миграции азовской хамсы через Керченский пролив в Черное море.

Начало хода:

У = 70,41 +0,127 X 1 ,-0,229 Х 2 ,

У = 27,68- 0,18 Х 2 - 0,009 (Н).

Начало массовой миграции:

У, = 36,01 +0,648 Х 3 -0,159 Х 2 ,

где У и У 1 - даты предполагаемого начала осенней миграции и массового хода (отсчет от 1 сентября); X 1 и Хз - даты окончательного перехода температуры воды через +16 и +14 °С (соответственно) в южной части Азовского моря (отсчет от 1 сентября); Х 2 - количество рыб (в %) в популяции с коэффициентом упитанности 0,9 и более по состоянию на 1 сентября, Н -продолжительность нагула (градус/дни) после нереста на 1 сентября.

Ошибка прогнозов сроков начала миграций по представленным моделям не превышает 2-3 дней.

III. Примеры двигательных рефлексов.

1. Мышечные рефлексы растяжения и торможения.

Рассмотрим мышечный рефлекс растяжения. Он предназначен для того, чтобы регулировать положение конечностей, обеспечивать неподвижное положение тела, поддерживать тело во время того, как оно стоит, лежит или сидит. Этот рефлекс поддерживает постоянство мышечной длины. Растяжение мышцы вызывает активацию мышечных веретен и сокращение, т. е. укорочение мышцы, противодействующей ее растяжению. Например, когда человек сидит, происходит растяжение мышц брюшного пресса и повышение их тонуса, противодействующее сгибанию спины. И наоборот, слишком сильное сокращение мышцы ослабляет стимуляцию ее рецепторов растяжения, мышечный тонус ослабевает

Рассмотрим прохождение нервного импульса по рефлекторной дуге. Следует сразу отметить, что мышечный рефлекс растяжения относится к простейшим рефлексам. Он проходит непосредственно от сенсорного нейрона к двигательному (рис.1). Сигнал (раздражение) поступает от мышцы на рецептор. По дендритам сенсорного нейрона импульс проходит в спинной мозг и там кратчайшим путем проходит в двигательный нейрон соматической нервной системы, а далее по аксону двигательного нейрона импульс попадает на эффектор (мышцу). Таким образом, осуществляется мышечный рефлекс растяжения.

Рис.1. 1 – мышца; 2 – мышечные рецепторы; 3 – сенсорный нейрон; 4 – двигательный нейрон; 5 – эффектор.

Другим примером двигательного рефлекса является рефлекс торможения. Он возникает как ответ на действие рефлекса растяжения. Тормозная рефлекторная дуга включает два центральных синапса: возбуждающий и тормозной. Можно сказать, что в данном случае мы наблюдаем работу мышц-антагонистов в паре, например, сгибателя и разгибателя в суставе. Мотонейроны одной мышцы тормозятся во время активации другого компонента пары. Рассмотрим сгибание коленного сустава. При этом мы наблюдаем, растяжение мышечных веретен разгибателя, что усиливает возбуждение мотонейронов и торможение мотонейронов сгибателя. Кроме того, уменьшение растяжения мышечных веретен сгибателя ослабляет возбуждение гомонимных мотонейронов и реципрокное торможение мотонейронов разгибателя (растормаживание). Под гомонимными мотонейронами мы понимаем все те нейроны, которые посылают аксоны к одной и той же мышце или возбуждают ту мыщцу, от которой берет начало соответствующий путь от перефирии к нервному центру. А реципрокное торможение – это процесс в нервной симстеме, основанный на том, что по одному и тому же афферентному пути осуществляется возбуждение одних групп клеток и торможение других групп клеток через втавочные нейроны. В конечном счете, мотонейроны разгибателей возбуждаются, а сгибателей – сокращаются. Таким образом, происходит регуляция длины мышцы.

Рассмотрим прохождение нервного импульса по рефлекторной дуге. Нервный импульс зарождается на мышце разгибателя и по аксонам сенсорного нейрона проходит в спинной мозг. Так как данная рефлекторная дуга относится к дисинаптическому типу, то импульс раздваивается, одна часть попадает на мотонейрон разгибателя для поддрежания длины мышцы, а другая – на мотонейрон сгибателя, происходит торможение разгибателя. Затем каждая часть нервного импульса переходит на соответствующий эффектор. Либо, в спинном мозге возможен переход на мотонейрон сгибателей коленного сустава через тормозные синапсы, которые позволяют изменять длину мышцы, а затем по двигательным аксонам выход на концевые пластинки (эффектор, скелетную мышцу). Возможны два других варианта, когда возбуждение воспринимает рецептор сгибателя, тогда рефлекс проходит по такому же пути.

ОРис.2 1. Мышца разгибатель. 2. Мышца сгибатель. 3. Мышечный рецептор. 4. Сенсорные нейроны. 5. Тормозные интернейроны. 6. Двигательный нейрон. 7. Эффектор

Познакомимся теперь с более сложными рефлексами.

2. Сгибательный и перекрестный разгибательный рефлекс.

Как правило, рефлекторные дуги включают в себя два и более последовательно связанных нейронов, т. е. являются полисинаптическими.

Примером может служить защитный рефлекс у человека. При воздействии на конечность, она отдергивается путем сгибания, например, в коленном суставе. Рецепторы данной рефлекторной дуги находятся в коже. Они обеспечивают движение, направленное на удаление конечности от источника раздражения.

При раздражении конечности происходит сгибательный рефлекс, конечность отдергивается, а противоположенная выпрямляется. Так происходит в результате прохождения импульса по рефлекторной дуге. Воздействуем на правую ногу. От рецептора правой ноги по аксонам сенсорного нейрона импульс попадает в спинной мозг, далее он направляется на четыре разных интернейроновых цепи. Две цепи идут на мотонейроны сгибателя и разгибателя правой ноги. Происходит сокращение мышцы сгибателя, а разгибатель расслабляется под воздействием тормозных интернейронов. Мы отдергиваем ногу. В левой ноге происходит расслабление мышцы сгибателя и сокращение мышцы разгибателя под воздействием возбуждающего интернейрона.

РисЧерные – тормозные интернейроны; красные возбуждающие. 2. Двигательные нейроны. 3.Эффекторы расслабленных мышц сгибателя и разгибателя. 4. Эффекторы сокращенных мышц сгибателя и разгибателя.

3. Сухожильный рефлекс.

Сухожильные рефлексы служат для поддержания постоянства напряжения мышцы. У каждой мышцы есть две регулирующие системы: регуляция длины, с помощью мышечных веретен в роли рецепторов и регуляция напряжения, в роли рецепторов в данной регуляции выступают сухожильные органы. Отличие системы регуляции напряжении от системы регуляции длины, в которой задействованы мышца и ее антагонист , заключается в использовании сухожильным рефлексом мышечного тонуса всей конечности.

Развиваемая мышцей сила зависит от её предварительного растяжения, скорости сокращения, утомления. Отклонение от мышечного напряжения от нужной величины регистрируется сухожильными органами и корректируется сухожильным рефлексом.

Рецептор (сухожилие) данного рефлекса находится в сухожилии конечности на конце мышцы сгибателя или мышцы разгибателя. Оттуда, по аксонам сенсорного нейрона сигнал проходит в спинной мозг. Там сигнал может пройти по тормозному интернейрону на двигательный нейрон разгибателя, который отправит сигнал на мышцу разгибатель, для поддержания мышцы в напряжении. Также сигнал может пойти на возбуждающий интернейрон, который отправит сигнал через двигательный аксон на эффектор сгибателя, для изменения напряжения мышцы и совершения определенного действия. В случае, когда возбуждение воспринимает рецептор (сухожилие) сгибателя, сигнал проходит через аксон сенсорного нейрона на интернейрон, а оттуда, на двигательный мотонейрон, который по аксонам двигательного нейрона посылает сигнал в мышцу сгибателя. В рефлекторной дуге сгибателя возможен путь только через тормозной интернейрон.

Рис.Сухожильный рецептор. 2. Сенсорный нейрон. 3. Тормозной интернейрон. 4. Возбуждающий интернейрон. 5. Двигательный нейрон. 6. Рецептор.

Текст защиты

Тема: «Формирование условных рефлексов у аквариумных рыб»

Все живые существа способны реагировать на изменение внешней и внутренней среды, что помогает им выжить. Характер взаимоотношения животных с окружающей средой обитания определяется уровнем развития нервной системы. Ответная реакция организма на воздействие внешней среды при участии нервной системы, называется рефлексом.

Знакомство с особенностями строения нервной системы в курсе седьмого класса начинается с изучения рыб. Нервная система рыб представлена головным и спинным мозгом. Передний отдел головного мозга рыб относительно небольшой. Наиболее развит средний мозг и его зрительные доли. Рыбы различают яркость освещения, выбирая более подходящие для данного вида места. Большинство рыб различает и цвет предмета. Особенно хорошо рыбы различают красный цвет. Орган слуха рыб представлен только внутренним ухом и состоит из лабиринта, включающего преддверие и три полукружных канала, расположенных в трёх перпендикулярных плоскостях. Хорошо развит промежуточный мозг и мозжечок. Это связано с необходимостью чёткой координацией движений во время плавания. Продолговатый мозг переходит в спинной. От спинного мозга отходят нервы, управляющие работой мышц тела и плавников.

Развитие нервной системы приводит к значительному усложнению всех её отделов. Внешне это проявляется в поведении животных, которое становится более сложным и многоплановым в зависимости от характера воздействий среды на организм. В основе всех реакций организма на раздражения лежит рефлекс. Приобретённый (условный) рефлекс – реакции, с помощью которых происходит приспособление организма к меняющимся условиям среды. Условные рефлексы формируются в течение жизни. Образование условных рефлексов лежит в основе обучения организма различным навыкам и приспособлениям к изменяющейся среде. Рыба является первым из изучаемых в школе животных, у которого можно образовать наиболее примитивные условные рефлексы пищевого характера. Для этих опытов пригодны различные рыбы, но способность к обучению у разных видов неодинакова.

По поведению рыб накоплен большой теоретический материал. Однако, наряду с тем, что количество работ на тему условно-рефлекторной деятельности у рыб очень велико, практически отсутствуют эволюционно-систематические работы по приобретённым формам поведения внутри класса рыб, хотя их используют в подобных исследованиях при более широких сравнениях. Поэтому нас и заинтересовал вопрос о выработке условных рефлексов у рыб, далёких друг от друга в систематическом положении.

Цель нашей работы заключалась в изучении и сравнении скорости выработки условных пищевых рефлексов на цветные кормушки (положительного на красный и отрицательного - на синий) у рыб разных видов в зависимости от их филогенетического родства.

В процессе достижения поставленной цели были решены следующие задачи:

Изучить и проанализировать литературу об особенностях формирования условных рефлексов у различных видов аквариумных рыб;

Познакомиться с особенностями строения и физиологией следующих видов аквариумных рыб: гуппи, меченосец, крапчатый сомик;

Изучить и сравнить скорость выработки условных пищевых рефлексов на цветные кормушки (положительного на красный и отрицательного - на синий) у рыб разных видов в зависимости от их филогенетического родства;

Добиться формирования условных рефлексов у рыб разных систематических категорий.

Данная работа проводилась в классной комнате. В опытах по изучению условно-рефлекторной деятельности были использованы рыбы трёх видов: один вид из подотряда Сомовидные –Крепчатый сомик, относящийся к семейству Калехтииды, а также два вида рыб, относящиеся к семейству Пецилиевых –меченосец (род Ксифофорусы) и гуппи (род Лебистес).

Исследование с рыбами проводилось в течение двух недель. В опыте было задействовано 10 рыб: 3 гуппи, 5 меченосцев и 2 сомика. Рыбы были разного возраста (мальки и взрослые особи около полутора лет), также учитывался пол особей. Для опыта был выделен один аквариум объемом 20литров. Также были подготовлены две кормушки с разным цветом: красная и синяя. Действие красного света подкреплялось кормом, действие синего оставалось без подкрепления. В качестве корма (безусловного раздражителя) применялся мелкий мотыль. Время действия условного раздражителя (цвет кормушки) составляло 10 секунд. Подача корма осуществлялась на 6-й секунде при наличии красной кормушки. В процессе опыта регистрировалось время захода рыбы в кормовую зону, время съедания корма, время выхода рыбы из зоны и другие особенности поведения испытуемой особи.

Опыты проводились в течение двух недель два раза в день в разные часы: 07. 30.- утреннее кормление, 15.00. – вечернее кормление. Обученными, считали рыб, приходящих в зону кормления после подачи красной кормушки, но до подачи корма, то есть до 6-й секунды.

Устойчивое повторение данного результата свидетельствовало о выработке положительного условного рефлекса на цвет красной кормушки. Отрицательный условный рефлекс считали выработанным, если рыба при наличии синей кормушки не заплывала в кормовую зону до 10-й секунды включительно.

В дальнейшем мы сравнивали результаты, полученные при опытах с разными рыбами, и делали выводы о способности к обучению, то есть выработке условных рефлексов по каждому исследуемому виду рыб. Также мы учитывали возрастные и половые особенности рыб.

Таким образом, мы пришли к выводу, что чёткая выработка условного рефлекса (положительного на красный и отрицательного на синий цвет) отмечается при данных условиях опыта только у самцов вида меченосцев половозрелого периода развития. Самки данного вида рыб допускали ошибки в утренние часы кормления, но в зону кормления всегда приплывали вовремя.

У представителей рыб вида гуппи рефлекс выработался позже, чем у меченосцев. Реакция рыб на красный цвет кормушки возникала примерно после 10 дня кормления. Здесь более активны и обучаемы были самки. Рыба начинала целенаправленно двигаться в сторону кормушки, но заплывала в зону кормления в основном после 10-й сек. У мальков условный рефлекс не выработался: полное отсутствие реакции на красный и синий цвет кормушек. Возможно, этой возрастной группе рыб требуется более длительный период времени на выработку подобного рефлекса.

Можно говорить об отсутствии какой-либо реакции на красный и синий цвет кормушки у крапчатого сомика. Очевидно, что для выработки рефлекса у этого вида необходимо изменение схемы эксперимента, возможно, сомики просто не различают цветов. Также можно предположить, что данный вид рыб добывает пищу у дна и поэтому не стремиться к поверхности воды.

Для детального анализа физиологических механизмов поведения рыб очень часто возникает необходимость изучать это поведение в экспериментальных условиях, где возможны точная дозировка факторов, которыми воздействуют на рыбу, и тонкая регистрация реакций организма.

В рамках эксперимента сложно сказать, что различия в обучении рыб обусловлены их филогенией. Скорее экологические особенности видов оказывают большее влияние на обучение животных. Но более твёрдые утверждения можно будет сделать после более глубоких и продолжительных исследований.


Залетова В.Д. 1

Тавченкова О.Н. 1

1 Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа № 5 г. Челябинска», МАОУ «СОШ № 5 г. Челябинска»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Многие ошибаются, считая, что рыбы глупые и невосприимчивые существа. Действительно, некоторые первоначально приобретают аквариум как исключительно декоративный предмет. Однако, наблюдая за рыбами, многие аквариумисты приходят к выводу, что рыбы не просто являются украшением интерьера, они живые создания, интересные своим поведением. Актуальность работы заключается в том, что эксперимент по выработке условного рефлекса у аквариумных рыбок учит нас внимательно относиться к живым существам, которые населяют мир вокруг нас, помогает нам наладить пути взаимодействия с живыми организмами. Эти знания, в свою очередь, дают нам возможность сделать среду обитания живых существ более комфортной, откликаться на нужды тех, чья жизнь зависит от нашего поведения.

Цель работы: изучить выработку условного рефлекса у разных видов аквариумных рыб.

Объект исследования: аквариумные рыбки.

Предмет исследования: условные рефлексы у рыб.

Гипотеза исследования: предположим, что при помощи полученных в ходе эксперимента знаний, можно выработать условные рефлексы рыб.

В соответствии с целью и гипотезой поставлены следующие задачи :

изучить поведение рыб, их условные и безусловные рефлексы;

определить и описать рыб, обитающих в моём аквариуме;

провести эксперименты по выработке условных рефлексов у рыб.

В работе использованы следующие методы исследования: изучение научной литературы и материалов сети Интернет, описание, наблюдение, анализ.

Теоретическая значимость работы заключается в том, что её результаты могут быть представлены на уроках окружающего мира при изучении рыб.

Мы считаем, что результаты исследования имеют практическое значение - помощь в организации наиболее комфортной среды обитания аквариумных рыбок.

Поведение рыб. Условные и безусловные рефлексы

Рыбы - позвоночные животные, обитающие в воде. Условия обитания рыб и поведение их взаимосвязаны. Каждый вид рыб имеет врожденные и приобретённые реакции на окружающий мир. Уровень развития данных реакций обусловлен степенью развития в процессе эволюции органов чувств и центральной нервной системы .

Деятельность всех органов тела у рыб и организма в целом регулируется нервной системой. Она состоит из нервной ткани, головного и спинного мозга.

Головной мозг рыб состоит из обонятельных частей, полушарий переднего мозга, промежуточного мозга с гипофизом, визуальных частей (среднего мозга), мозжечка и удлиненного мозга.

Неплохо у рыб развита память, они могут запомнить своих владельцев, отличить их от других людей.

Большое значение в жизни и поведении рыб занимает зрение. Наверняка, все замечали, что когда подносишь корм, рыбки сразу оживляются, следят за движением руки. Роговая оболочка глаза рыб слабо выпуклая, хрусталик шарообразной формы, отсутствуют веки. Зрачок не способен сокращаться и увеличиваться. Вследствие сокращения мышц серповидного отростка хрусталик глаза может отходить назад, таким образом, достигается приспосабливание и настройка зрения рыб . Рыбы отличают яркость света, подбирают наиболее оптимальные для данного вида зоны. Большая часть рыб видят тон объекта.

Органы обоняния рыб размещены в ноздрях, представляющих собой простые углубления со слизистой оболочкой, пронизанной разветвлением нервов, идущих от обонятельной части мозга. При помощи поступающих через ноздри сигналов рыбка может ухватить аромат еды или противника на достаточно приличной дистанции .

Органы вкуса рыб презентованы вкусовыми сосочками. Любопытно, что у большинства типов рыб размещаются сосочки не только лишь во рту, но и на усиках, голове и по бокам туловища, аж до хвостового стебля .

У очень многих рыб хорошо сформировано осязание, в особенности это относится к большинству донных рыб и обитателей мутной воды. Усики рыб - это органы их осязания. Усиками рыбы ощупывают разнообразные объекты и животных, обнаруживают еду, ориентируются на местности.

Наружного уха у рыб нет. Органы слуха представлены внутренним ухом. Внутреннее ухо состоит из трех полукружных каналов с ампулами, овального мешочка и круглого мешочка с выступом (лагеной). Звуки дают возможность рыбам ориентироваться в водном пространстве, обнаруживать еду, спасаться от противников, привлекать особей противоположного пола.

Несмотря на известную поговорку, рыбы не настолько уж немы. Разумеется, вряд ли рыбы смогут обрадовать нас мелодичными созвучиями. Издаваемые некоторыми рыбами звучания человек способен четко расслышать на большом расстоянии. Звуки отличаются по высоте и интенсивности. Как правило, рыбы используют звуковые сигналы в период размножения .

В коже боковой поверхности находится уникальный орган чувств - боковая линия. Как правило, боковая линия является системой углублений или каналов в коже головы и тела с нервными окончаниями в глубине. Соединена вся система нервами с внутренним ухом. Она предназначена для восприятия низкочастотных колебаний, что дает возможность выявлять передвигающиеся предметы. Благодаря линии, рыба приобретает данные о течении и направлении воды, ее химическом составе, давлении, «чувствует» инфразвуки.

Рыбы меняются данными и делают это, используя разнообразные сигналы: звуковые, зрительные, электрические и прочие. Для рыб, обитающих стаями, взаимодействие необходимо: оно может помочь обнаружить питание, спастись от хищников, подобрать брачного партнера и осуществлять прочие значимые для рыб дела .

Виды аквариумных рыб для наблюдения

Гу́ппи (лат. Poecilia reticulata ) - пресноводная живородящая рыба. Размер самцов 1,5-4 см; стройные; породистые особи часто с длинными плавниками; окраска часто яркая. Размер самок 2,8-7 см; плавники всегда пропорционально меньше чем у самцов; самки из природных мест обитания и многих пород серые с выраженной ромбической сеткой чешуи, за что вид и получил своё название: reticulum с лат. - сетка, сеточка.

Самая популярная и неприхотливая аквариумная рыбка. В домашнем аквариуме населяет все слои. В неволе живёт дольше и вырастает больше, чем в природе. В аквариумах чаще всего содержатся различные породы гуппи либо результат их смешения .

Весьма миролюбивы и способны уживаться с разными видами рыб. Важно только учитывать невозможность длительного проживания гуппи поодиночке. Поэтому заселять этих рыбок в аквариум необходимо парами или группами. Оптимальной постоянной температурой воды является диапазон +24-26 °C.

Гуппи неприхотливы, но максимального расцвета могут достичь только при благоприятных условиях. Потомство самых породистых родителей в плохих условиях не достигнет ни их яркости, ни их пышности плавников. Гуппи могут жить в стакане воды, но это скорее существование, нежели жизнь.

Аквариумная рыбка суматранский барбус (лат. Puntius tetrazona, а ранее Barbus tetrazona), это яркая и активная рыбка, которая оживит любой биотоп. Это некрупная рыбка, с желтовато-красным телом и черными полосами, за которые в английском языке он даже получил название тигровый барбус .

Содержать несложно и он отлично подходит для аквариумистов разного уровня. Они достаточно выносливы, при условии, что вода чистая и в аквариуме соблюден баланс. В аквариуме с суматранскими барбусами лучше посадить много растений, но важно, чтобы было и свободное место для плавания. Впрочем, нежные побеги растений они могут и обгрызать, хотя делают это довольно редко. Видимо при недостаточном количестве растительной пищи в рационе .

У суматранского барбуса высокое, округлое тело с заостренной головой. Это некрупные рыбки, в природе они вырастают до 7 см, в аквариуме несколько меньше. При хорошем уходе живут до 6 лет. Цвет тела желтовато-красный, с очень заметными черными полосами. Плавники окрашены красным. Также в это время у них краснеет и мордочка.

Едят все виды живых, замороженных или искусственных кормов. Желательно кормить его наиболее разнообразно, для поддержания активности и здоровья иммунной системы. Например, основу рациона могут составлять качественные хлопья, а дополнительно давать живые корма - мотыль, трубочник, артемию и коретру. Так же желательно добавлять хлопья содержащие сприулину, так как могут портить растения.

Аквариумная рыбка неон голубой или обыкновенный (лат. Paracheirodon innesi) давно известна и очень популярна. Своим появлением в 1930 году он создал фурор и не потерял популярно вплоть до наших дней. Стая голубых неонов в аквариуме создает завораживающий вид, который не сможет оставить равнодушным. Именно эти факторы сделали его таким популярным.

Наиболее комфортно неоны себя чувствуют в стайке от 6 особей, именно в ней раскрываются самые яркие цвета окраски. Неоны очень мирные и желанные жители общих аквариумов, но содержать их нужно только с некрупной и такой же мирной рыбой. Маленькие размеры и мирный нрав, плохие помощники против хищных рыб!

Выделяет неона прежде всего ярко-синяя полоса идущая через все тело, которая делает его очень заметным. А контрастом к ней, идет ярко-красная полоса, которая начинается с середины тела и идет до хвоста, чуть заходя на него.

Сами по себе голубые неоны - чудесные и мирные рыбки. Никого никогда не трогают, уживаются с любыми мирными рыбами. Но вот они как раз и могут стать жертвой других рыб, особенно, если это крупная и хищная рыбка типа мечерота или зеленого тетрадона. Можно содержать с крупной, но не хищной рыбой, например, со скаляриями. С какими рыбками уживаются неоны? С гуппи, пецилиями, кардиналами, меченосцами, радужницами, барбусами и тетрами .

Бойцовая рыбка или петушок (лат. Betta splendens), неприхотлив, красив, но может забивать самку и других самцов. Он типичная лабиринтовая рыба, то есть может дышать атмосферным кислородом . Именно аквариумный петушок, да еще его родственник - макропод, были одними из первых аквариумных рыбок, которых завезли в Европу из Азии. Но задолго до этого момента, бойцовую рыбку уже разводили в Таиланде и Малайзии.

Популярность рыбка получила за свой роскошный внешний вид, интересное поведение и способность жить в маленьких аквариумах. А еще он легко разводится и так же просто скрещивается, как результат - множество вариаций окраски, отличных во всем, начиная от цвета, и заканчивая формой плавников.

Петушок просто отлично подходит для начинающих и тех аквариумистов, которые не могут позволить себе большой аквариум. Ему нужен самый минимум, как в объеме, так и в питании. А еще он неприхотлив, крепок, всегда есть в продаже. За счет своего лабиринтового аппарата, может выживать в воде бедной на кислород, и в очень маленьких аквариумах.

Отличить самца от самки у петушков очень просто. Самец крупнее, ярче окрашен, у него большие плавники. Самки бледнее, мельче, плавники маленькие, а брюшко заметно округлее. К тому же держится она скромно, стараясь держаться укромных уголков, и не попадаться на глаза самцу.

Выработка условных рефлексов у аквариумных рыб

В выработке условных рефлексов рыбы принадлежат к наиболее примитивным позвоночным. Тем не менее, различные представители этого класса дают нам замечательные образцы сложных форм поведения, которые заслуживают того, чтобы исследовать их.

В ответ на различные раздражители внешней среды, воспринимаемые органами чувств, рыбы отвечают довольно ограниченным числом двигательных реакций: подплывают или уплывают, ныряют, схватывают пищу ртом, избегают препятствий, которые мешают проплыванию, и т. д. Световой раздражитель в зависимости от его яркости и качественного состава действует различно на рецепторы глаз рыбы и вызывает соответствующий нервный импульс, который передается по чувствительным нервам в мозг, а отсюда рефлекторно устремляется по двигательным нервам к коже. Расположенные в коже рыб пигментные клетки под влиянием нервных импульсов претерпевают изменение. От этого и происходит рефлекторное изменение цвета тела .

Для успешного проведения эксперимента по выработке условного рефлекса необходимо соблюдать следующие требования:

1. Кормить рыбок в разное время, иначе вырабатывается условный рефлекс на время.

2. Первым должен действовать условный раздражитель (стук, свет).

3. Условный раздражитель опережает по времени или совпадает с безусловным раздражителем - пищевым (кормом).

4. Условный раздражитель и кормление сочетаются несколько раз.

5. Условный рефлекс считается выработанным, если рыбки при появлении условного раздражителя приплывают к тому место, где они получают корм.

6. При выработки различных рефлексов место кормления необходимо менять .

Опыт 1. Выработка условного пищевого рефлекса при приближении постороннего предмета.

Рыбы способны различать не только цвет, но и форму, а также величину движущихся предметов. Например, на вид пинцета, с которого рыбы берут корм, с течением времени вырабатывается условный пищевой рефлекс. Вначале рыбки пугаются погруженного в воду пинцета, но, получая с него каждый раз корм, они через некоторое время начинают доверчиво подплывать к пинцету, вместо того чтобы уплывать (рисунок 1 ).

Рис. 1. Кормление с пинцета

Это означает, что у рыб выработался условный рефлекс на пинцет как на раздражитель, совпадающий с безусловным раздражителем-кормом. В данном случае пинцет служит сигналом пищи.

Результат опыта:

В данном опыте пинцет служит сигналом пищи. Образованный рефлекс может сохраняться и в отсутствие кормления, но без подкрепления пищей он начинает тормозиться, угасает (таблица1).

Таблица 1

Результаты наблюдений кормления с пинцета

начали опыт 18.09.2017 г.

аквариумных рыб

Вывод: Условный рефлекс вырабатывается на основе безусловного, имея опережающее влияние условного раздражителя - пинцет. В головном мозге рыб между зрительной и пищевой зонами коры больших полушарий устанавливается временная связь.

У рыб вида барбус условный рефлекс «Реакция на пинцет» выработался быстрее, чем у других обитателей нашего аквариума. Нет реакции на пинцет у улиток.

Опыт 2. Выработка условного пищевого рефлекса «Реакция рыб на звуковые раздражители».

Как известно, у рыб нет ни наружного, ни среднего уха. Органом слуха (и равновесия) у них является только внутреннее ухо, которое характеризуется сравнительно простым строением. К внутреннему уху подходят окончания слухового нерва. Вопрос о том, слышат ли рыбы или они глухи, долгое время был дискуссионным. Теперь можно считать доказанным, что рыбы воспринимают звуки, но только в том случае, если последние проходят сквозь воду. По существу рыбы не могут улавливать звук как колебание воздуха: для этого необходимо было бы иметь более сложный слуховой аппарат (барабанную перепонку, слуховые косточки), который в процессе эволюции появился лишь у земноводных, у рыб же он отсутствует. Возникающие в воздухе звуковые колебания рыбы в состоянии воспринять в виде вибрации частиц воды, если они приходят в движение под влиянием ударов воздушных звуковых волн. Следовательно, рыбы слышат не так, как наземные животные. Вне воды рыбы становятся глухими и не реагируют даже на самые сильные звуки. Мы провели опыт по выработке условного рефлекса на постукивание, сопровождая кормление рыб легкими ударами твердым предметом о стенки аквариума (рисунок 2 ).

Рис. 2. Кормление с постукиванием

Результат опыта:

В результате примерно неделю при одном лишь постукивании (без кормления) рыбы подплывают к месту, в котором они обычно получали корм (таблица 2 ).

Таблица 2

Результаты опыта кормления с постукиванием

начали опыт 26.09.2017 г.

аквариумных рыб

Время приближения рыб к корму (секунд)

Вывод: У рыб вида барбус и неон условный рефлекс «Кормление с постукиванием» выработался быстрее, чем у рыб других видов. Нет реакции кормление с постукиванием у улиток. Рефлекс на стук выработался у рыб на 6 день.

Опыт 3. Выработка условного пищевого рефлекса при световом раздражителе .

Развитие глаз, их величина и положение на голове рыбы находятся в прямой зависимости от условий ее жизни. Так, например, у донных рыб, которые наблюдают снизу за приближением добычи, глаза расположены на верхней части головы (сом); у рыб, лежащих на дне на одном боку, глаза перемещаются на ту сторону тела, которая обращена вверх (камбала). В условиях глубоководного обитания, куда свет почти не проникает, органы зрения рыб либо редуцированы, либо увеличены в размерах. В первом случае - это результат понижения зрительной функции, а во втором - ее повышения. При полной утрате зрения у некоторых глубоководных рыб возрастает светочувствительность их кожи как компенсирующее приспособление к ориентировке в специфических условиях слабо освещенной зоны водоема. Такое же биологическое значение имеет в отдельных случаях развитие у глубоководных рыб светящихся органов, хотя их роль этим не исчерпывается. Необходимо отметить, что рыбы имеют положительную реакцию на свет. Они подплывают к тем местам, которые хорошо освещены солнцем. Здесь сосредоточивается их естественный корм - многочисленные мелкие ракообразные, питающиеся фитопланктоном (свободно плавающими водорослями, жизнь которых зависит от солнечной радиации). Так как планктон в качестве безусловного пищевого раздражителя действовал на рыб каждый раз в сочетании с солнечным светом, то последний получил в их жизни значение сигнала пищи (рисунок 3 ) .

Рис. 3. Кормление со световым раздражителем

Мы провели опыт по кормлению рыб в присутствии светового раздражителя: каждый раз при кормлении мы включали свет в аквариуме.

Результат опыта:

Надо думать, что вначале у рыб выработался условный пищевой рефлекс на свет, но с течением времени, повторяясь многократно в ряду поколений, этот рефлекс был унаследован и превратился во врожденную биологически полезную реакцию - фототаксис, который стал для рыб средством отыскания пищи. Этот фототаксис в последнее время успешно используют в рыболовстве, привлекая рыб при помощи электроламп и других источников света. Промысловая разведка с применением света дает также хорошие результаты. В данном случае человек управляет исторически сложившимся инстинктом рыб (стремлением к свету) в своих интересах в ущерб их жизни, что указывает на относительный характер целесообразности врожденных реакций (таблица 3 ).

Таблица 3

Результаты опыта кормления со световым раздражителем

начали опыт 01.10.2017 г.

аквариумных рыб

Время приближения рыб к корму (секунд)

Вывод: Рыбки вида барбус и петушок реагирует на свет быстрее, чем другие рыбы. Нет реакции кормление со светом у улиток, слабая реакция у гуппи.

Заключение

В результате проделанной работы выяснилось, что аквариум - маленький мирок, дающий уникальную возможность перенести в дом кусочек природы, где всё согласовано, живёт в гармонии, развивается, меняется, раскрывая себя наблюдателю.

У высокоорганизованных животных, имеющих центральную нервную систему, существуют две группы рефлексов: безусловные (врожденные) и условные (приобретенные). Рефлексы имеют важное приспособительное значение для сохранения целостности организма, полноценного функционирования и постоянства внутренней среды . У аквариумных рыб можно выработать всевозможные условные рефлексы на различные раздражители: время, свет, цвет и форму предметов и др.

В ходе проделанного эксперимента нами сделаны следующие выводы.

Для выработки условного рефлекса у аквариумных рыбок необходимо соблюдение определенных условий.

В ходе эксперимента выработан условные рефлексы у аквариумных рыбок гуппи, барбус, неон, петушок на звук, свет и кормление с пинцета.

Быстрее других у рыб вырабатывается рефлекс на звук.

Условные рефлексы способствуют приспособлению организмов к условиям среды (в данном случае - условиям кормления).

Степень реагирования и способность к обучению значительно отличаются у представителей разных семейств и даже видов аквариумных рыб. При изучении поведения рыб в условиях аквариума уровень адаптации у таких видов как барбус, петушок и неон оказывается высоким. Полностью отсутствуют реакции на внешние раздражители у аквариумных улиток.

Постукивание по стенке аквариума стало более сильным раздражителем, и поэтому условный рефлекс выработался быстрее.

Таким образом, гипотеза исследования, что мы можем выработать условные рефлексы рыб подтвердилась, цель и задачи исследования выполнены.

В данной работе рассмотрен пример выработки лишь некоторых условных рефлексов. Приобретенные знания дают начало широкому спектру возможностей для научного познания законов природы и совершенствования собственных знаний.

Наблюдение за рыбками, а также написание исследовательской работы научили меня самостоятельно работать с источниками информации (книгой, интернетом), обрабатывать информацию, вести дневник наблюдений. В дальнейшем мне бы хотелось продолжить наблюдать за рыбами, попытаться выработать у них новые рефлексы, научиться понимать их нужды.

Многие говорят, что рыбок держать неинтересно, потому что их нельзя дрессировать. Но дрессировка основывается на развитии условного рефлекса. А мои наблюдения за рыбами подтвердили, что у них можно развивать условные рефлексы.

Библиографический список

Зипер, А. Ф. Управление поведением животных и птиц. Рефлексы в жизни животных [Текст]. - Режим доступа: http://fermer02.ru/animal/296-refleksy-v-zhizni-zhivotnykh.html

Плешаков, А.А. От земли до неба. Атлас-определитель: кн. для учащихся нач. кл. [Текст] / А.А. Плешаков. - М.: Просвещение, 2016. - 244 с.

Правила выработки условных рефлексов [Текст]. - Режим доступа: http://www.medicinform.net/human/fisiology8_1.htm

Сереев, Б.Ф. Занимательная физиология [Текст] / Б.Ф. Сергеев. - М.: Дрофа, 2004. - 135 с.

Я познаю мир: Детская энциклопедия: Животные [Текст, рисунок]. - М.: ООО «Изд-во АСТ», 2001. - 223 с.


Top