Пример расчета коэффициентов линейной регрессии. Несколько слов о «линейной» регрессии

Иногда так бывает: задачу можно решить чуть ли не арифметически, а на ум прежде всего приходят всякие интегралы Лебега и функции Бесселя. Вот начинаешь обучать нейронную сеть, потом добавляешь еще парочку скрытых слоев, экспериментируешь с количеством нейронов, функциями активации, потом вспоминаешь о SVM и Random Forest и начинаешь все сначала. И все же, несмотря на прямо таки изобилие занимательных статистических методов обучения, линейная регрессия остается одним из популярных инструментов. И для этого есть свои предпосылки, не последнее месте среди которых занимает интуитивность в интерпретации модели.

Немного формул

В простейшем случае линейную модель можно представить так:

Y i = a 0 + a 1 x i + ε i

Где a 0 - математическое ожидание зависимой переменной y i , когда переменная x i равна нулю; a 1 - ожидаемое изменение зависимой переменной y i при изменении x i на единицу (этот коэффициент подбирают таким образом, чтобы величина ½Σ(y i -ŷ i) 2 была минимальна - это так называемая «функция невязки»); ε i - случайная ошибка.
При этом коэффициенты a 1 и a 0 можно выразить через матан коэффициент корреляции Пирсона , стандартные отклонения и средние значения переменных x и y:

 1 = cor(y, x)σ y /σ x

 0 = ȳ - â 1 x̄

Диагностика и ошибки модели

Чтобы модель была корректной, необходимо выполнение условий Гаусса-Маркова , т.е. ошибки должны быть гомоскедастичны с нулевым математическим ожиданием. График остатков e i = y i - ŷ i помогает определить, насколько адекватна построенная модель (e i можно считать оценкой ε i).
Посмотрим на график остатков в случае простой линейной зависимости y 1 ~ x (здесь и далее все примеры приводятся на языке R ):

Скрытый текст

set.seed(1) n <- 100 x <- runif(n) y1 <- x + rnorm(n, sd=.1) fit1 <- lm(y1 ~ x) par(mfrow=c(1, 2)) plot(x, y1, pch=21, col="black", bg="lightblue", cex=.9) abline(fit1) plot(x, resid(fit1), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Остатки более-менее равномерно распределены относительно горизонтальной оси, что говорит об «отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях». А теперь исследуем такой же график, но построенный для линейной модели, которая на самом деле не является линейной:

Скрытый текст

y2 <- log(x) + rnorm(n, sd=.1) fit2 <- lm(y2 ~ x) plot(x, y2, pch=21, col="black", bg="lightblue", cex=.9) abline(fit2) plot(x, resid(fit2), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



По графику y 2 ~ x вроде бы можно предположить линейную зависимость, но у остатков есть паттерн, а значит, чистая линейная регрессия тут не пройдет . А вот что на самом деле означает гетероскедастичность :

Скрытый текст

y3 <- x + rnorm(n, sd=.001*x) fit3 <- lm(y3 ~ x) plot(x, y3, pch=21, col="black", bg="lightblue", cex=.9) abline(fit3) plot(x, resid(fit3), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Линейная модель с такими «раздувающимися» остатками не корректна. Еще иногда бывает полезно построить график квантилей остатков против квантилей, которые можно было бы ожидать при условии, что остатки нормально распределены:

Скрытый текст

qqnorm(resid(fit1)) qqline(resid(fit1)) qqnorm(resid(fit2)) qqline(resid(fit2))



На втором графике четко видно, что предположение о нормальности остатков можно отвергнуть (что опять таки говорит о некорректности модели). А еще бывают такие ситуации:

Скрытый текст

x4 <- c(9, x) y4 <- c(3, x + rnorm(n, sd=.1)) fit4 <- lm(y4 ~ x4) par(mfrow=c(1, 1)) plot(x4, y4, pch=21, col="black", bg="lightblue", cex=.9) abline(fit4)



Это так называемый «выброс» , который может сильно исказить результаты и привести к ошибочным выводам. В R есть средства для его обнаружения - с помощью стандартизованой меры dfbetas и hat values :
> round(dfbetas(fit4), 3) (Intercept) x4 1 15.987 -26.342 2 -0.131 0.062 3 -0.049 0.017 4 0.083 0.000 5 0.023 0.037 6 -0.245 0.131 7 0.055 0.084 8 0.027 0.055 .....
> round(hatvalues(fit4), 3) 1 2 3 4 5 6 7 8 9 10... 0.810 0.012 0.011 0.010 0.013 0.014 0.013 0.014 0.010 0.010...
Как видно, первый член вектора x4 оказывает заметно большее влияние на параметры регрессионной модели, нежели остальные, являясь, таким образом, выбросом.

Выбор модели при множественной регрессии

Естественно, что при множественной регрессии возникает вопрос: стоит ли учитывать все переменные? С одной стороны, казалось бы, что стоит, т.к. любая переменная потенциально несет полезную информацию. Кроме того, увеличивая количество переменных, мы увеличиваем и R 2 (кстати, именно по этой причине эту меру нельзя считать надежной при оценке качества модели). С другой стороны, стоить помнить о таких вещах, как AIC и BIC , которые вводят штрафы за сложность модели. Абсолютное значение информационного критерия само по себе не имеет смысла, поэтому надо сравнивать эти значения у нескольких моделей: в нашем случае - с разным количеством переменных. Модель с минимальным значением информационного критерия будет наилучшей (хотя тут есть о чем поспорить).
Рассмотрим датасет UScrime из библиотеки MASS:
library(MASS) data(UScrime) stepAIC(lm(y~., data=UScrime))
Модель с наименьшим значением AIC имеет следующие параметры:
Call: lm(formula = y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data = UScrime) Coefficients: (Intercept) M Ed Po1 M.F U1 U2 Ineq Prob -6426.101 9.332 18.012 10.265 2.234 -6.087 18.735 6.133 -3796.032
Таким образом, оптимальная модель с учетом AIC будет такой:
fit_aic <- lm(y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data=UScrime) summary(fit_aic)
... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -6426.101 1194.611 -5.379 4.04e-06 *** M 9.332 3.350 2.786 0.00828 ** Ed 18.012 5.275 3.414 0.00153 ** Po1 10.265 1.552 6.613 8.26e-08 *** M.F 2.234 1.360 1.642 0.10874 U1 -6.087 3.339 -1.823 0.07622 . U2 18.735 7.248 2.585 0.01371 * Ineq 6.133 1.396 4.394 8.63e-05 *** Prob -3796.032 1490.646 -2.547 0.01505 * Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Если внимательно присмотреться, то окажется, что у переменных M.F и U1 довольно высокое значение p-value, что как бы намекает нам, что эти переменные не так уж и важны. Но p-value - довольно неоднозначная мера при оценки важности той или иной переменной для статистической модели. Наглядно этот факт демонстрирует пример:
data <- read.table("http://www4.stat.ncsu.edu/~stefanski/NSF_Supported/Hidden_Images/orly_owl_files/orly_owl_Lin_9p_5_flat.txt") fit <- lm(V1~. -1, data=data) summary(fit)$coef
Estimate Std. Error t value Pr(>|t|) V2 1.1912939 0.1401286 8.501431 3.325404e-17 V3 0.9354776 0.1271192 7.359057 2.568432e-13 V4 0.9311644 0.1240912 7.503873 8.816818e-14 V5 1.1644978 0.1385375 8.405652 7.370156e-17 V6 1.0613459 0.1317248 8.057300 1.242584e-15 V7 1.0092041 0.1287784 7.836752 7.021785e-15 V8 0.9307010 0.1219609 7.631143 3.391212e-14 V9 0.8624487 0.1198499 7.196073 8.362082e-13 V10 0.9763194 0.0879140 11.105393 6.027585e-28
p-values у каждой переменной - практически нуль, и можно предположить, что все переменные важны для этой линейной модели. Но на самом деле, если присмотреться к остаткам, выходит как-то так:

Скрытый текст

plot(predict(fit), resid(fit), pch=".")



И все же, альтернативный подход основывается на дисперсионном анализе , в котором значения p-value играют ключевую роль. Сравним модель без переменной M.F с моделью, построенной с учетом только AIС:
fit_aic0 <- update(fit_aic, ~ . - M.F) anova(fit_aic0, fit_aic)
Analysis of Variance Table Model 1: y ~ M + Ed + Po1 + U1 + U2 + Ineq + Prob Model 2: y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob Res.Df RSS Df Sum of Sq F Pr(>F) 1 39 1556227 2 38 1453068 1 103159 2.6978 0.1087
Учитывая P-значение, равное 0.1087, при уровне значимости α=0.05 мы можем сделать вывод, что нет статистически значимого свидетельства в пользу альтернативной гипотезы, т.е. в пользу модели с дополнительной переменной M.F.

х - называется предиктором - независимой или объясняющей переменной.

Для данной величины х, Y — значение переменной у (называемой зависимой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а - свободный член (пересечение) линии оценки; это значение Y, когда х = 0.

b - угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например: при увеличении температуры тела человека на 1 о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.


Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r 2). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признака-результата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Пример

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид:

САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115) = 101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) = 108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx 1 +b 2 x 2 +.... + b n х n

Можно интересоваться результатом влияния нескольких независимых переменных х 1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример

Поскольку между ростом и массой тела ребёнка существует сильная зависимость, можно поинтересоваться, изменяется ли также соотно-шение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД = 79,44 - (0,03 х рост) + (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 - мальчик, 1 - девочка)

Согласно этому уравнению, девочка, рост которой 115 см и масса тела 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 - (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь» = 1, «не имеет болезни» = 0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице.

Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии — натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx 1 +b 2 x 2 +.... + b n х n

logit (р) — оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а — оценка константы (свободный член, пересечение);

b 1 , b 2 ,... ,b n — оценки коэффициентов логистической регрессии.

1. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсона?

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

Задача.

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (Y, млн. руб.).

Таблица 1.

Зависимость объема выпуска продукции от объема капиталовложений.

X
Y

Требуется :

1. Найти параметры уравнения линейной регрессии , дать экономическую интерпретацию коэффициента регрессии.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.

3. Проверить выполнение предпосылок МНК.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α = 0,05).

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F - критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации . Сделать вывод о качестве модели.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α = 0,1, если прогнозное значения фактора Х составит 80% от его максимального значения.

7. Представить графически фактические и модельные значения Y точки прогноза.

8. Составить уравнения нелинейной регрессии и построить их графики:

Гиперболической;

Степенной;

Показательной.

9. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

Найдем параметры уравнения линейной регрессии и дадим экономическую интерпретацию коэффициента регрессии.

Уравнение линейной регрессии имеет вид: ,

Вычисления для нахождения параметров a и b приведены в таблице 2.

Таблица 2.

Расчет значений для нахождения параметров уравнения линейной регрессии.

Уравнение регрессии имеет вид: y = 13,8951 + 2,4016*x.

С увеличением объема капиталовложений (X) на 1 млн. руб. объем выпускаемой продукции (Y) увеличится в среднем на 2,4016 млн. руб. Таким образом, наблюдается положительная корреляция признаков, что свидетельствует об эффективности работы предприятий и выгодности капиталовложений в их деятельность.

2. Вычислим остатки; найдем остаточную сумму квадратов; оценим дисперсию остатков и построим график остатков.

Остатки вычисляются по формуле: e i = y i - y прогн.

Остаточная сумма квадратов отклонений: = 207,74.

Дисперсия остатков: 25.97.

Расчеты приведены в таблице 3.

Таблица 3.

Y X Y=a+b*x i e i = y i - y прогн. e i 2
100,35 3,65 13,306
81,14 -4,14 17,131
117,16 -0,16 0,0269
138,78 -1,78 3,1649
136,38 6,62 43,859
143,58 0,42 0,1744
73,93 8,07 65,061
102,75 -1,75 3,0765
136,38 -4,38 19,161
83,54 -6,54 42,78
Сумма 0,00 207,74
Среднее 111,4 40,6

График остатков имеет вид:


Рис.1. График остатков

3. Проверим выполнение предпосылок МНК, который включает элементы:

- проверка равенства математического ожидания случайной составляющей нулю;

- случайный характер остатков;

- проверка независимости;

- соответствие ряда остатков нормальному закону распределения.

Проверка равенства математического ожидания уровней ряда остатков нулю.

Осуществляется в ходе проверки соответствующей нулевой гипотезы H 0: . С этой целью строится t-статистика , где .

, таким образом, гипотеза принимается.

Случайный характер остатков.

Проверим случайность уровней ряда остатков с помощью критерия поворотных точек:

Количество поворотных точек определяем по таблице остатков:

e i = y i - y прогн. Точки поворота e i 2 (e i - e i -1) 2
3,65 13,31
-4,14 * 17,13 60,63
-0,16 * 0,03 15,80
-1,78 * 3,16 2,61
6,62 * 43,86 70,59
0,42 * 0,17 38,50
8,07 * 65,06 58,50
-1,75 * 3,08 96,43
-4,38 19,16 6,88
-6,54 42,78 4,68
Сумма 0,00 207,74 354,62
Среднее

= 6 > , следовательно, свойство случайности остатков выполняется.

Независимость остатков проверяется с помощью критерия Дарбина - Уотсона :

=4 - 1,707 = 2,293.

Так как попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости. Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определяется с помощью R/S-критерия с критическими уровнями (2,7-3,7);

Рассчитаем значение RS:

RS = (e max - e min)/ S,

где e max - максимальное значение уровней ряда остатков E(t) = 8,07;

e min - минимальное значение уровней ряда остатков E(t) = -6,54.

S - среднеквадратическое отклонение, = 4,8044.

RS = (e max - e min)/ S= (8,07 + 6,54)/4,8044 = 3,04.

Так как 2,7 < 3,04 < 3,7, и полученное значение RS попало в за-данный интервал, значит, выполняется свойство нормальности распределения.

Таким образом, рассмотрев различные критерии выполнения предпосылок МНК, приходим к выводу, что предпосылки МНК выполняются.

4. Осуществим проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента α = 0,05.

Проверка значимости отдельных коэффициентов регрессии связана с определением расчетных значений t-критерия (t-статистики) для соответствующих коэффициентов регрессии:

Затем расчетные значения сравниваются с табличными t табл = 2,3060. Табличное значение критерия определяется при (n- 2) степенях свободы (n - число наблюдений) и соответствующем уровне значимости a (0,05)

Если расчетное значение t-критерия с (n- 2) степенями сво-боды превосходит его табличное значение при заданном уровне зна-чимости, коэффициент регрессии считается значимым.

В нашем случае коэффициенты регрессии a 0 - незначимый, а 1 - значимый коэффициенты.

При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.

Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.

Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

  1. Определение регрессии . Регрессия - функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

    С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

  2. Определение коэффициента регрессии . Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
  3. Формула коэффициента регрессии . R у/х = r ху x (σ у / σ x)
    где R у/х - коэффициент регрессии;
    r ху - коэффициент корреляции между признаками х и у;
    (σ у и σ x) - среднеквадратические отклонения признаков x и у.

    В нашем примере ;
    σ х = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
    σ у = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
    Таким образом, R у/х - коэффициент регрессии.
    R у/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

  4. Уравнение регрессии . у = М у + R y/x (х - М x)
    где у - средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
    х - известная средняя величина другого признака;
    R y/x - коэффициент регрессии;
    М х, М у - известные средние величины признаков x и у.

    Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, R у/х = 1,8 заболеваний, М х = -7°, М у = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
    Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

  5. Назначение уравнения регрессии . Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график - линия регрессии , по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
  6. Сигма регрессии (формула) .
    где σ Rу/х - сигма (среднеквадратическое отклонение) регрессии;
    σ у - среднеквадратическое отклонение признака у;
    r ху - коэффициент корреляции между признаками х и у.

    Так, если σ у - среднеквадратическое отклонение числа простудных заболеваний = 8,65; r ху - коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен - 0,96, то

  7. Назначение сигмы регрессии . Дает характеристику меры разнообразия результативного признака (у).

    Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х 1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
    При х 2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

    Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

  8. Данные, необходимые для расчета и графического изображения шкалы регрессии
    • коэффициент регрессии - R у/х;
    • уравнение регрессии - у = М у + R у/х (х-М x);
    • сигма регрессии - σ Rx/y
  9. Последовательность расчетов и графического изображения шкалы регрессии .
    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.
    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у 2 , у 3 ...)* для определеного значения роста (х, х 2 , х 3 ...).
      ________________
      * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

      При этом средние значения массы тела и роста (М х, и М у) для определенного возраста и пола известны

    • вычислить сигму регрессии, зная соответствующие величины σ у и r ху и подставляя их значения в формулу (см. п. 6).
    • на основании известных значений х 1 , х 2 , х 3 и соответствующих им средних значений у 1 , у 2 у 3 , а также наименьших (у - σ rу/х)и наибольших (у + σ rу/х) значений (у) построить шкалу регрессии.

      Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х 2 , х 3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

      Затем в соответствующих точках у 1 , y 2 , y 3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у 1 , y 2 , y 3 .

  10. Практическое использование шкалы регрессии . Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела - (у) для данного роста (x) (у ± 1 σ Ry/x).

    Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σ Ry/x)

    Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σ Ry/x).

По результатам статистического исследования физического развития мальчиков 5 лет известно, что их средний рост (х) равен 109 см, а средняя масса тела (у) равна 19 кг. Коэффициент корреляции между ростом и массой тела составляет +0,9, средние квадратические отклонения представлены в таблице.

Требуется:

  • рассчитать коэффициент регрессии;
  • по уравнению регрессии определить, какой будет ожидаемая масса тела мальчиков 5 лет при росте, равном х1 = 100 см, х2 = 110 см, х3= 120 см;
  • рассчитать сигму регрессии, построить шкалу регрессии, результаты ее решения представить графически;
  • сделать соответствующие выводы.

Условие задачи и результаты ее решения представлены в сводной таблице.

Таблица 1

Условия задачи Pезультаты решения задачи
уравнение регрессии сигма регрессии шкала регрессии (ожидаемая масса тела (в кг))
М σ r ху R у/x х У σ R x/y y - σ Rу/х y + σ Rу/х
1 2 3 4 5 6 7 8 9 10
Рост (х) 109 см ± 4,4см +0,9 0,16 100см 17,56 кг ± 0,35 кг 17,21 кг 17,91 кг
Масса тела (y) 19 кг ± 0,8 кг 110 см 19,16 кг 18,81 кг 19,51 кг
120 см 20,76 кг 20,41 кг 21,11 кг

Решение .

Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка. Для этого следует восстановить перпендикуляр к линии регрессии.

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
  2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
  3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
  4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
  5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
  6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.

Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую переменную, «в среднем» изменяются в зависимости от того, какие значения принимает другая переменная, рассматриваемая как причина по отношению к зависимой переменной. Действие данной причины осуществляется в условиях сложного взаимодействия различных факторов, вследствие чего проявление закономерности затемняется влиянием случайностей. Вычисляя средние значения результативного признака для данной группы значений признака-фактора, отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится дальнейшее их элиминирование и получается однозначное (по форме) изменение «y» с изменением фактора «x».

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio- обратное движение, переход от более сложных форм развития к менее сложным) - одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886.

Теоретическая линия регрессии - это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи.

Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» - причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.

y=f(x) - уравнение регрессии - это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом.

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико.

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

1. Линейная:

2. Гиперболическая:

3. Показательная:

4. Параболическая:

5. Степенная:

6. Логарифмическая:

7. Логистическая:

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.

Критерий метода наименьших квадратов можно записать таким образом:

Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум.

Относительно оценок можно сделать следующие выводы:

1. Оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать.

2. Оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии.

3. Эмпирическая прямая регрессии обязательно проходит через точку x, y.

4. Эмпирическое уравнение регрессии построено таким образом, что сумма отклонений

.

Графическое изображение эмпирической и теоретической линии связи представлено на рисунке 1.


Параметр b в уравнении – это коэффициент регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной зависимости коэффициент регрессии – отрицательный. Коэффициент регрессии показывает на сколько в среднем изменяется величина результативного признака «y» при изменении факторного признака «x» на единицу. Геометрически коэффициент регрессии представляет собой наклон прямой линии, изображающей уравнение корреляционной зависимости, относительно оси «x» (для уравнения

).

Раздел многомерного статистического анализа, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания

неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии.


Top