Рабочей прибавка основной обмен их показатели. Основной обмен у человека

Основной обмен- энергозатраты связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем - дыхательной мускулатуры, сердца, почек, печени. Некоторая часть энергозатрат в условиях основного обмена связана с поддержанием мышечного тонуса. Освобождение в ходе всех этих процессов тепловой энергии обеспечивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.

Условия определения основного обмена: обследуемый должен находиться

1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение;

2) натощак, т. е. через 12- 16 ч после приема пищи;

3) при внешней температуре «комфорта» (18-20 °С), не вызывающей ощущения холода или жары.

Основной обмен определяют в состоянии бодрствования. Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8-10 % ниже, чем в состоянии покоя при бодрствовании.

Методы определения основного обмена:

    Прямая, непрямая калориметрия;

    По уравнениям с учетом пола, возраста, роста, массы тела с помощью специальных таблиц.

Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за одни сутки.

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки, для женщин около 15ОО ккал/сут. У женщин на 5-1О% ниже, чем у мужчин. У детей выше, чем у взрослых. У стариков ниже на 1О-15%. .

3.Потенциал действия и его фазы. Ионные механизмы возбуждения, Изменения проницаемости клеточной мембраны при возбуждении.

Потенциал действия - это кратковременное изменение разности потенциала между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), возникающее в момент возбуждения. При регистрации потенциала действия с помощью микроэлектродной техники наблюдается типичный пикообразный потенциал. В нем выделяют следующие фазы или компоненты:

    Локальный ответ - начальный этап деполяризации.

    Фазу деполяризации - быстрое снижение мембранного потенциала до нуля и перезарядка мембраны (реверсия, или овершут).

    Фазу реполяризации - восстановление исходного уровня мембранного потенциала; в ней выделяют фазу быстрой реполяризации и фазу медленной реполяризации, в свою очередь, фаза медленной реполяризации представлена следовыми процессами (потенциалами):следовая негативность (следовая деполяризация) и следовая позитивность (следовая гиперполяризация). Амплитудно-временные характеристики потенциала действия нерва, скелетной мышцы таковы: амплитуда потенциала действия 140-150 мВ; длительность пика потенциала действия (фаза деполяризации + фаза реполяризации) составляет 1-2 мс, длительность следовых потенциалов - 10-50 мс. Форма потенциала действия (при внутриклеточном отведении) зависит от вида возбудимой ткани: у аксона нейрона, скелетной мышцы - пикообразные потенциалы, у гладких мышц в одних случаях пикообразные, в других - платообразные (например, потенциал действия гладких мышц матки беременной женщины - платообразный, а длительность его составляет почти 1 минуту). У сердечной мышцы потенциал действия имеет платообразную форму.

Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости – ионов калия и органических соединений. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений. В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд.

Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Ионный механизм возбуждения:

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации натриевых каналов. При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются извне-во внутриклеточное пространство. Вхождению ионов Na+ в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов К+.

Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации). Мембрана характеризуется повышенной проницаемостью для ионов Na+ лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na+ вновь понижается, а для К+ возрастает. В результате поток Na+ внутрь клетки резко ослабляется, а ток К+ из клетки усиливается. В течение потенциала действия в клетку поступает значительное количество Na+, а ионы К+ покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na+, К+ - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na+ и увеличении внешней концентрации ионов К+.

Благодаря работе ионного насоса и изменению проницаемости мембраны для Na+ и К+ первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

БИЛЕТ 24

Прочитайте:
  1. A. да, т.к декларация о доходах основной вид документа налогоплательщика.
  2. C) обмен наследственной информации между гомологичными хромосомами
  3. II. Средства, влияющие преимущественно на рецепторы эфферентной иннервации сердца
  4. АДРЕНЕРГИЧЕСКИЕ СРЕДСТВА ИЛИ СРЕДСТВА, ВЛИЯЮЩИЕ НА ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ В АДРЕНЕРГИЧЕСКИХ СИНАПСАХ (АДРЕНОМИМЕТИЧЕСКИЕ И АДРЕНОБЛОКИРУЮЩИЕ СРЕДСТВА)
  5. Акселерация. Факторы, влияющие на физическое развитие ребенка.
  6. Биологическое значение воды. Изменения водно-солевого обмена человека во время занятий фкис.

Минимальный расход энергии, необходимый для обеспечения существования организма, называют основным обменом. Он составляет около 50-70% суточного расхода энергии человека, ведущего сидячий образ жизни.

Факторы, влияющие на основной обмен

На величину основного обмена веществ максимальное влияние (в среднем) оказывают три фактора: возраста, пол и масса тела.

В среднем мышечная масса у мужчин выше на 10-15%. Практически на такое же значение у женщин больше жировой ткани, следствием чего является и меньшая величина основного обмена.

Эта же зависимость определяет и влияние возраста человека на величину основного обмена. Средний статистический человек с возрастом все более и более теряет свою мышечную массу - с каждым годом и физическая и социальная активность снижается.

Масса тела оказывает прямое влияние на величину основного обмена - чем больше вес человека, чем больше энергии затрачивается на любое движение или перемещение (и здесь не принципиально, что перемещается - мышечная ткань или жировая).

Должный основной обмен может быть оценен по таблицам Харриса и Бенедикта, учитывающим пол, вес, рост и возраст испытуемого. Для арифметического расчёта должного существуют формулы.

Истинный отличается от должного и часто именно это отличие имеет диагностическое или прогностическое значение. Поэтому оценка должного не заменяет определения фактического.

Рабочая прибавка. Общие энергозатраты различных профессиональных групп.

Рабочая прибавка это энергозатраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы населения:

1.Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

2.Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

3.Лица занятые частично механизированным трудом (шофера, токари, слесари). 2500-3700 ккал/сут.

4.Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут.Специфически-динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено он у белков. Меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.

Обмен веществ и энергии как необходимое условие жизни. Этапы образования тепла и энергии. Прямая и непрямая калориметрия. Калорический коэффициент кислорода. Дыхательный коэффициент.

Обмен веществ и энергии, или метаболизм - совокупность химических и физи­ческих превращений веществ и энергии, происходящих в жи­вом организме и обеспечивающих его жизнедеятельность.

Анаболизм - это процесс усвоения организмом веществ, при котором расходуется энергия.

Катаболизм -процесс распада сложных органических соединений, протекающий с высвобождением энергии.

Прямая калориметрия- подсчет энергозатрат заключается в прямом измерении кол-ва тепла непосредственно выделяемого организмом в теплоизоляционной камере.

Непрямая калориметрия- изменение количества потребляемого кислорода и выделяемого угл.газа также расчет дыхательного коэфициента и расчет калорического эквивалента кислорода.

Калорический коэффициент кислорода- количество тепла образующегося в организаме в результате потребления 1л.кислорода.

Дыхательный коэффициент- отношение объма выделяемого углекислого газа к объему кислорода.

74.Принципы составления пищевого рациона. Теории питания. Питание должно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. следует соблюдать ряд принципов:

Калорийность пищевого рациона должна соответствовать энергетическим затратам организма на все виды жизнедеятельности.

Необходимо учитывать питательную ценность пищевых веществ. В пищевом рационе должно содержаться оптимальное для данного индивидуума или профессиональной группы количество белков, жиров и углеводов, минеральных веществ, витаминов и воды.

Требуется соблюдать сбалансированность в пищевом рационе количества белков, жиров, углеводов и минеральных веществ.

Важно правильное распределение калорийности рациона по отдельным приемам пищи в течение суток в соответствии с биоритмами, режимом и характером труда и иных видов деятельности.

Применение методов технологической обработки, обеспечивающей удаление вредных веществ, не вызывающих уменьшение биологической ценности пищи, а также не допускающей образования токсических продуктов.

Обеспечение органолептических достоинств пищи, способствующих её перевариванию и усвоению.-

Наличие в пищевом рационе пищевых волокон, способствующих выведению токсических продуктов распада из организма.

Теория питания:

Теория сбалансированного питания- что полноценное питание характеризуется оптимальным соответствием количества и соотношений всех компонентов пищи физиологическим потребностям организма. Это означает, что вся съеденная за день пища должна уходить на восполнение физических затрат.

Теория прямого питания-пригодна лишь а исключительных случаях, в основном при лечении тяжело больных.(питание через трубку)

Теория адекватного питания- необходимыми компонентами пищи является баластные вещества; поступление в организм биологических веществ; в процессе усвоения и обмена в-в важную роль играет микрофлора кишечника.

Основной обмен

один из показателей интенсивности обмена веществ и энергии в организме; выражается количеством энергии, необходимой для поддержания жизни в состоянии полного физического и психического покоя, натощак, в условиях теплового комфорта. О. о. отражает энергетические траты организма, обеспечивающие постоянную деятельность сердца, почек, печени, дыхательной мускулатуры и некоторых других органов и тканей. Освобождаемая в ходе метаболизма тепловая энергия расходуется на поддержание постоянства температуры тела.

Определяют в состоянии бодрствования (во время сна уровень О. о. понижается на 8-10%). Определение О. о. проводят в условиях мышечного покоя; не менее чем через 12-16 ч после последнего приема пищи, при исключении белков из пищевого рациона за 2-3 суток до момента определения О. о.; при внешней температуре комфорта, не вызывающей ощущения холода или жары (18-20°).

Величину О. о. обычно выражают количеством тепла в килокалориях (ккал ) или в килоджоулях (кДж ) в расчете на 1 кг массы тела или на 1 м 2 поверхности тела за 1 ч или за 1 сутки. Величина, или уровень, О. о. колеблется у различных людей и зависит возраста, веса (массы) тела, пола и некоторых других факторов. В среднем величина основного обмена у мужчины весом 70 кг составляет около 1700 ккал в сутки (1 ккал на 1 кг веса в 1 ч ). У женщин интенсивность О. о. ниже примерно на 10-15%. У новорожденных величина О. о. составляет 46-54 ккал на 1 кг массы тела в сутки и возрастает в течение первых месяцев жизни, достигая максимума в конце первого - начале второго года. При этом интенсивность О. о. ребенка превышает О. о. взрослого человека в 1,5-2 раза. Затем интенсивность О. о. начинает постепенно уменьшаться, стабилизируясь в возрасте 20-40 лет. У пожилых людей О. о. снижается.

Если расчет интенсивности О. о. производить не на единицу веса, а на единицу площади, то выясняется, что индивидуальные различия величины О. о. менее значительны. На основании фактов, свидетельствующих о наличии закономерной связи между интенсивностью обмена веществ и величиной поверхности, немецкий физиолог Рубнер (М. Rubner) сформулировал « », согласно которому затраты энергии теплокровными животными пропорциональны величине поверхности тела. Вместе с тем установлено, что этот закон имеет относительное значение и позволяет проводить лишь ориентировочные расчеты высвобождения энергии в организме. Против абсолютного значения «закона поверхности» свидетельствует и тот факт, что интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела. Уровень окислительных процессов определяется, т.о. не столько теплоотдачей с поверхности тела, сколько теплопродукцией тканей и зависит от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной и эндокринной систем.

Даже в том случае, когда соблюдаются все стандартные условия для определения О. о., интенсивность процессов обмена подвергается суточным колебаниям: она возрастает утром и снижается в ночной период (см. Биологические ритмы). Отмечены сезонные изменения О. о. у человека: повышение его весной и ранним летом и понижение поздней осенью и зимой. Сезонные изменения связаны не столько с температурными факторами, сколько с изменением двигательной активности, колебаниями гормональной активности и т.д. Потребление питательных веществ и их последующее переваривание повышают интенсивность процессов обмена, особенно в том случае, если питательные вещества имеют белковую природу. Такое влияние пищи на уровень обмена веществ и энергии носит название специфического динамического действия пищи. К изменению уровня О. о. ведут также продолжительное ограничение питания, избыточное потребление пищи, повышенное или недостаточное содержание в рационе отдельных питательных веществ.

Температура окружающей среды также влияет на интенсивность процессов О. о.: сдвиги в сторону охлаждения приводят к большему усилению обмена веществ, чем соответствующие сдвиги в сторону повышения температуры (при падении температуры воздуха на 10° уровень О. о. повышается на 2,5%).

Определение О. о. имеет большое значение в диагностике некоторых заболеваний. На основании результатов обследования большого числа здоровых людей установлена средняя О. о. - так называемый должный О. о. Должный О. о. (в ккал за 24 ч ) принят в расчетах за 100%. Фактический О. о. выражается в процентах отклонения от должного в сторону повышения со знаком плюс, в сторону понижения - со знаком минус

Допустимое отклонение от должной величины колеблется от +10 до +15%. Отклонения в пределах от +15% до +30% считаются сомнительными, требуют контроля и наблюдения; от +30% до +50% относят к отклонениям средней тяжести; от +50% до +70% - к тяжелым, а свыше +70% - к очень тяжелым. Снижение обмена на 10% еще нельзя считать патологическим, При снижении на 30-40% требуется основного заболевания.

Для определения О. о. используют методы прямой и непрямой калориметрии. Необходимо учитывать возможность расхождения данных прямой и непрямой калориметрии, что связано с кратковременностью определения потребления кислорода. При более длительных определениях (порядка 24 ч ) результаты обоих методов должны, очевидно, совпадать. Искажение представления об О. о. может быть связано с тем, что калорическая ценность кислорода оказывается различной в зависимости от характера субстратов ( , жиры или ), преимущественно окисляющихся в организме в процессе Газообмен а. Величину О. о. можно ориентировочно определить с помощью специальных клинических формул (например, формул Рида, Гейла и др.). По формуле Рида процент отклонения О. о. равен: 75, умноженным на , плюс разница систолического и диастолического артериального давления, умноженная на 0,74-72. По формуле Гейла процент отклонения О. о. равен: пульс плюс разница систолического и диастолического минус 111. Общими обязательными условиями при этом являются следующие: подсчет пульса, измерение АД должны осуществляться всегда только в стандартных условиях О. о.; клинические формулы неприменимы к больным с декомпенсированными заболеваниями сердца, почек и печени, гипертонической болезнью, мерцательной аритмией, пароксизмальной тахикардией, недостаточностью клапанов аорты и некоторыми другими тяжелыми заболеваниями и состояниями.

Патологическая . Согласно существующим представлениям, общая организма складывается из первичной и вторичной теплоты. Первичная теплота - это результат рассеивания энергии окисления субстратов в цепи транспорта электронов, вторичная - следствие использования для той или иной клеточной функции образующихся в ходе тканевого дыхания макроэргических соединений. Основные клеточные механизмы нарушений О. о. сводятся к изменению интенсивности образования первичной или вторичной теплоты или обоих ее видов вместе. Изменение каждого из этих процессов сопровождается изменением потребления кислорода - наиболее распространенного критерия величины О. о. В случае усиленного расходования макроэргических соединений на различные виды работы клетки вступает в силу дыхательной контроль в митохондриях, сущность которого заключается в том, что продукт дефосфорилирования является мощным стимулятором тканевого дыхания (см. Дыхание тканевое). При ослаблении или полном снятии дыхательного контроля («рыхлое» сопряжение или разобщение окислительного фосфорилирования) обычно регистрируется усиленное потребление кислорода.

Патология нервной системы может обусловить изменение О. о. как в результате прямого нарушения образования первичной теплоты, так и вследствие изменения интенсивности функционирования того или иного органа или ткани. Примером первого механизма являются, по-видимому, поражения диэнцефальных вегетативных центров ( , опухоли, кровоизлияния и т.п.), воспроизводимые в эксперименте «тепловыми уколами» в подкорковые образования. Второй механизм обусловливает снижение О. о. при параличах и повышение его при усиленном функционировании органов дыхания, кровообращения, мышц и. по-видимому, печени. Значение изменений деятельности различных органов для возникновения сдвигов в О. о. не одинаково. Так, напряженная деятельность головного мозга или почек относительно мало влияет на общий тепловой баланс организма, тогда как , а также работа сердца и органов дыхания играют определяющую роль в общей теплопродукции организма.

Значительное влияние на О. о. оказывает вегетативной (преимущественно симпатической) нервной системы, т.к. вырабатываемые ею принимают непосредственное участие в терморегуляции (Терморегуляция). хромаффинной ткани (см. Хромаффинома) секретирующей и норадреналин, сопровождаются резким повышением О. о. Удаление симпатических ганглиев и мозгового вещества надпочечников, наоборот, может снизить О. о. Помимо влияния на функцию внутренних органов, эти вещества, по-видимому, могут действовать и на процессы образования первичной теплоты, но механизм такого эффекта пока не полностью ясен.

Причиной изменений О. о. при разнообразных видах эндокринной патологии наиболее часто являются заболевания щитовидной железы, сопровождающиеся повышенной или пониженной секрецией тиреоидных гормонов, выполняющих в организме специфическую роль регуляторов интенсивности тканевого дыхания и энергетического обмена. Повышение О. о. служит наиболее постоянным признаком гипертиреоза, сопровождающего такие эндокринные заболевания, как токсический , тиреотоксическую аденому и др. (см. Тиреотоксикоз). Снижение функции щитовидной железы (см. Гипотиреоз) обусловливает уменьшение основного обмена.

Выраженные изменения О. о. наблюдаются при патологии передней доли гипофиза, например снижение О. о. при гипопитуитаризме (см. Гипоталамо-гипофизарная недостаточность) или удалении гипофиза. Роль других гормонов в генезе механизмов нарушения О. о. недостаточно изучена. обычно сопровождается снижением О. о., однако у больных аддисоновой болезнью его снижение является непостоянным симптомом. поджелудочной железы снижает О. о. за счет своего угнетающего действия на катаболические процессы. Способность этого гормона уменьшать теплопродукцию используют при экспериментальной гибернации. Удаление поджелудочной железы, а также сахарный приводят к повышению О. о., что, вероятно, обусловлено не только выпадением прямого влияния инсулина на теплопродукцию, но и метаболическими изменениями, в частности повышением уровня свободных жирных кислот и кетоновых , которые в больших концентрациях способны угнетать процессы окислительного фосфорилирования.

Изменения О. о. часто наблюдаются при различных интоксикациях, инфекционно-лихорадочных заболеваниях. При этом выявлена независимость стимуляции окислительных процессов от самого факта существования лихорадки. Наиболее изученным является действие 2,4-α-динитрофенола, который считается классическим разобщителем окислительного фосфорилирования. Повышение О. о. при динитрофеноловой интоксикации, как и при действии тиреоидных гормонов, характеризуется большим приростом теплопродукции, несоразмерным с потреблением кислорода. Другие могут повышать О. о. либо за счет разобщения окислительного фосфорилирования (дифтерийный, стафилококковый и стрептококковый токсины, салицилаты), либо за счет иных, не до конца выясненных причин (например, эндотоксины). Имеются данные, что повышение О. о., вызываемое инфекционно-токсическими агентами, связано с действием гормонов щитовидной железы.

Повышение О. о. характерно для поздних стадий развития злокачественных опухолей и особенно лейкозов. Причины этого не вполне установлены, но, по-видимому, сам клеточный как процесс, сопровождающийся усиленным распадом макроэргических соединений с увеличением образования вторичной теплоты, не исчерпывает механизмов повышения теплопродукции в этих случаях.

Гипоксия обычно характеризуется повышением О. о. за счет повышения интенсивности деятельности систем органов дыхания и кровообращения, а также накопления токсических продуктов межуточного обмена. Вместе с тем очень тяжелые степени гипоксии сопровождаются снижением О. о. При анализе влияния гипоксии необходимо учитывать ее частое сочетание с гиперкапнией, поскольку значительный избыток углекислоты угнетает теплопродукцию. обычно протекают с повышением О. о., в генезе которого могут играть роль токсические продукты метаболизма. Фактором, обусловливающим изменение О. о., является длительное , при котором включаются механизмы резкого ограничения энерготрат, приводящие к снижению О. о.

Библиогр.: Држевецкая И.А. Основы физиологии обмена веществ и , М., 1977; Мак-Мюррей У. веществ у человека, . с англ., М., 1980; Теппермен Дж. и Теппермен X. обмена веществ и эндокринной системы, пер. с англ., М., 1989; Физиология человека, под ред. Р. Шмидта и Г. Тевса, пер. с англ., т. 4, М., 1986.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Основной обмен" в других словарях:

    Количество энергии, расходуемое животным или человеком при полном покое, натощак и при комфортной температуре (для человека 18 20С). Выражают в кДж (ккал) за 1 ч (или 1 сут) в расчете на 1 кг массы или 1 м² поверхности тела. Основной обмен… … Большой Энциклопедический словарь

    Количество энергии, расходуемое животным или человеком при полном покое, натощак и при комфортной температуре (для человека 18 20°C). Выражают в кДж (ккал) за 1 ч (или 1 сут) в расчёте на 1 кг массы или 1 м2 поверхности тела. Основной обмен… … Энциклопедический словарь

    Совокупность процессов обмена веществ и энергии, происходящих в организме человека или животного в бодрствующем состоянии, при покое, натощак, при оптимальной (комфортной) температуре. Количество энергии, расходуемой организмом на… … Большая советская энциклопедия

    основной обмен - rus основной обмен (м) eng basal metabolism, basal metabolic rate fra métabolisme (m) de base, métabolisme (m) basal deu Grundumsatz (m) spa metabolismo (m) basal … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Количество энергии, расходуемое животным или человеком при полном покое, натощак и при комфортной темп ре (для человека 18 20 °С). Выражают в кДж (ккал) за 1 ч (или 1 сут) в расчёте на 1 кг массы или 1 м2 поверхности тела. О. о. определяют при… … Естествознание. Энциклопедический словарь

    Основной обмен - – минимальное количество энергии, необходимое для нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний; выражается количеством энергии в единицу времени, кДж/кг/сутки; определяют утром… … Словарь терминов по физиологии сельскохозяйственных животных

Энергетический обмен присущ каждой живой клетке, сопровождая ее функциональный и структурный метаболизм. Единицей измерения энергообмена является 1 ккал (4,19 кДж). Коэффициент полезного действия определяется отношением внешней работы к выработанной энергии. Для изолированной мышцы он составляет около 35% . Мышечная работа целого организма редко дает КПД больше 25%.

Различают следующие уровни метаболической активности :

1. Уровень энергообмена, несовместимый с жизнью . По отношению к организму в целом он не превышает 15% максимального в данных условиях энергообмена. Однако надо помнить, что для организма в целом уровень обменных процессов имеет иное значение, чем для изолированных органов, ибо снижение активности работы сердца ведет к смерти организма даже когда обмен в самом сердце снижается на 50%.

2. Уровень подержания целостности . Он не может быть ниже 15% всей активности.

3. Уровень готовности к активному действию . Обычно составляет 50% энергообмена.

При снижении величины энергообмена ниже 50% происходит ухудшение и снижение функциональной активности организма.

Интенсивность энергообмена зависит от характера деятельности. В зависимости от этого выделяют понятия основной обмен и рабочий обмен . Однако, прежде чем нам рассматривать эти понятия, обратимся к методам исследования энергетических затрат организма.

Их два - прямая калориметрия и непрямая калориметрия . Куда и в каком виде тратится энергия в организме? Понятно, что прежде всего на мышечную работу, затем - на проведение электрических импульсов, на работу химических насосов, на синтез продуктов, на работу сердца и внутренних органов. В этом плане в организме встречается и механическая, и электрическая и разные виды химической энергии.

Для изучения энергетических затрат методом прямой калориметрии надо любыми возможными способами непосредственно измерить эту энергию, которую организм, в соответствии с законом сохранения энергии, преобразует тепло и выделяет о внешнюю следу. Такое исследование возможно в специальных камерах, разработанных русским ученым Шатерниковым. В них создаются все условия для жизнеобеспечения человека или животного в течение суток и для измерения всего тепла, выделенного организмом за это время. Это длительная и дорогостоящая процедура, поэтом она в клинике н используется, хотя применяется в некоторых научных лабораториях.

Остаются косвенные методы измерения энергозатрат. Известно, что в результате окисления 1 г белков и углеводов освобождается 4,1 ккал тепла, а при окислении 1г жиров - 9,3 ккал. Зная количество принятых за определенный срок с пищей белков, жиров и углеводов, можно было бы рассчитать, сколько за это время поступило в организм энергии (а значить и выделилось, в соответствии с законом сохранения энергии). Этот метод учета общей величины энергозатрат организма называется методом пищевых рационов. Он не требует никакой аппаратуры, производится лишь учет количества съеденной пищи и по таблицам подчитывается ее калорийность.

Однако этот метод не совсем точен, ибо постоянно может быть отложение воспринятых веществ в депо, или, наоборот, присоединение к принятой пище ранее депонированных продуктов. Поэтому метод пищевых рационов применяется чаще всего лишь для контроля за общей калорийностью и энергетической ценностью пищи.

Более точным методом при определении энергетических затрат является метод исследования газообмена, который тоже относится к непрямой калориметрии. Из-за простоты, портативность аппаратуры и быстроты определения он имеет весьма широкое распространение. Основан метод газообмена на том, что между количеством освобожденного к организмом тепла, выделением углекислого газа и поглощением кислорода существуют точные соотношения.

Исследования теплоты сжигания каждого рода пищевых веществ в калориметрической бомбе показывают. что определенному количеству поглощенного кислорода и выделенного углекислого газа соответствует и определенное количество калорий выделенного тепла. Зная состав исследуемого вещества, нетрудно рассчитать, сколько кислорода необходимо для его полного окисления до углекислого газа и воды. С учетом этих количеств для каждого вещества определяется калорический эквивалент кислорода (КЭК ), т.е. количество тепла, освобождающееся при полном окислении его в условиях поглощения 1л кислорода. КЭК для углеводов равен 5 ккал, для жиров - 4,7 ккал, для белков - около 4,85 ккал. Это значит, что при окислении углеводов при потреблении каждого литра кислорода выделятся 5 ккал тепла.

Знание величины КЭК позволяет точно устанавливать величину энергетических затрат путем определения количества кислорода, которое за данный промежуток времени потреблено организмом.

Однако, чтобы это было возможно, необходимо знать еще, какие вещества в данный момент времени окисляются в организме. Это возможно определить по т.н. дыхательному коэффициенту . Дело в том, что в зависимости от химического состава окисляющегося вещества соотношение выделенного углекислого газа и потребленного кислорода различно. Это отношение и носит название дыхательного коэффициента (ДК). При окислении углеводов он равен 1, так как: C6H12O6 +6O2 =6CO2 +6H2O

Для жиров ДК равен 0,7, для белков 0,85. Поэтому, зная величины выделенного и поглощенного газа, легко рассчитать ДК, а зная его - применить нужный КЭК.

Методика изучения газообмена в принципе состоит в определении состава вдыхаемого и выдыхаемого воздуха и их объемов, и вычислении указанных коэффициентов.

Однако, поскольку люди питаются в основном смешанной пищей, то путем многих статистических исследований показано, что в среднем при общепринятом европейском рационе ДК равен 0,9 без особо больших колебаний. Если принять ДК за 0,9, тогда не надо определять количество поглощенного углекислого газа, достаточно знать величину поглощенного кислорода. Это делается легко с помощью метода Крога в приборах метаболиметрах или спирометрах. С конкретной методикой Вы познакомитесь на занятиях.

В 60-х годах прошлого столетия Биддером и Шмидтом было установлено, что расход энергии в покое отличается значительным постоянством. Оказалось, что у человека и животных наиболее низкие величины расхода энергии наблюдаются при исключении мышечной деятельности и приема пищи, и при температуре среды, соответствующей минимальной активности механизмов терморегуляции. Этот уровень получил название основного обмена.

Для определения основного обмена (ОО ) обычно производят исследование газообмена в утренние часы, через 14 часов после последнего приема пищи при температуре помещения 20-22оС. Исследуемый должен лежать совершенно спокойно, в удобной для него позе. Лучше всего исследование производить в постели, сразу после пробуждения. Исследование продолжается 10-15 минут.

У лиц одинакового роста, веса, пола и возраста основной обмен примерно одинаков и колеблется не более чем +-15%. Зная вес тела, рост и возраст, можно с помощью специальных формул и таблиц определить интенсивность должного основного обмена (ДОО) у людей. Истинные величины ОО не должны отличаться от ДОО более чем на 15%. Изменения ОО наблюдаются чаще всего при гормональных нарушениях (щитовидной и др. желез) и ряде других заболеваний.

Если пересчитать интенсивность ОО на 1 кг веса тела, то она весьма различна у животных разных видов и людей разного веса, роста и возраста. При этом у детей она выше, чем у взрослых. Если же произвести перерасчет интенсивности ОО на 1 м2 поверхности тела, то полученные результаты у разных животных и людей будут отличаться значительно меньше. Это дало в свое время повод Рубнеру сформулировать т.н. "правило поверхности ", согласно которому затраты энергии теплокровных животных пропорциональны поверхности тела.

Однако это не абсолютно верно. Интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела, так как уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией клеток, зависящей от вида животного и состояния организма, которое, в свою очередь, обусловлено деятельностью его нервной системы и эндокринного аппарата. В связи с этим большее значение имеет т.н. "правило скелетных мышц " Аршавского, которое утверждает зависимость ОО от объема мышечной массы тела.

Определенные изменения расхода энергии отмечаются с возрастом. Самый высокий уровень обмена - у новорожденных и детей до года, затем эти величины снижаются. К 10-12 годам уровень обмена достигает показателей взрослого человека, однако до полового созревания у девочек он больше, чем у мальчиков.

Куда идет энергия в условиях основного обмена? В организме, находящемся в состоянии полного покоя, никогда не прекращается работа сердца, дыхательных мышц, деятельность почек, печени. Некоторое напряжение скелетных мышц (тонус) сохраняется и при полном расслаблении мускулатуры во время лежания и во сне. Считают, что из всего обмена веществ приблизительно 4-6% приходится на сердечную мышцу, 4-6% - на почки, 20-30% - на печень и органы пищеварения, 2-5% - на нервную систему и 40-50% - на скелетную мускулатуру.

Уровень обмена веществ неразрывно связан с процессами питания. На обмен веществ оказывают влияние как отдельные примы пищи, так и общее количество принятой с пищей веществ, а также их качественный состав. Всякий прием пищи вызывает повышение обмена веществ в организме, находящемся в условиях мышечного покоя. Это повышение обмена называется специфически динамическим действием пищи (СДП).

Наибольшее СДП оказывает прием белков. Повышение обмена может достигать при этом 30-40% общей энергетической ценности введенного в организм белка. Для углеводов СДП составляет 4-6%, для жиров - еще меньше. При питании смешанной пищей СДП составляет 10-12% ОО.

Причина СДП двоякая. 60% ее величины приходится на условно-рефлекторный компонент (доказывается опытом мнимого кормления). 40% приходится на работу пищеварительного аппарата. У новорожденных детей еще до первого кормления сосание соски-пустышки вызывает увеличение обмена. Очевидно, влияние акта еды на уровень обмена является безусловным рефлексом, биологическое значение которого заключается в том, что организм получает энергию для деятельности (возможно, из депо) задолго до того, когда принятые с пищей вещества реально поступят в метаболический котел. Если бы такого механизма не существовало, выбившийся из сил голодный человек смог бы активно передвигаться только через 3-4 часа после кормления. В реальной жизни он может это делать сразу после еды.

При мышечной деятельности обмен веществ в мускулатуре и в организме в целом сильно возрастает. Так, по сравнению с уровнем обмена лежа сидение вызывает повышение обмена на 12%, стояние - на 20%, ходьба - на 80-100%, бег - на 300-400%. Весьма интенсивная работа может повысить обмен веществ в 10 раз.

По степени энергетических затрат можно распределить представителей разных профессий на 4 группы. Суточный расход энергии этих групп такой:

1 группа - работники умственного труда (ученые, врачи, инженеры, студенты и т.п.) - 3000 ккал/сут.;

2 группа - работники механизированных производств (токари, водители, текстильщики и т.п.) - 3500 ккал/сут.;

3 группа - рабочие, занятые физическим трудом (слесари, истопники, с/х рабочие и т.п.) - 4000 ккал/сут.;

4 группа - рабочие тяжелого физического труда (грузчики, землекопы и т.п.) - 4500 ккал/сут. и более.

При умственном труде энергетические затраты значительно ниже, чем при физическом. Однако в гипнозе может быть большое повышение.

Принципы составления пищевых рационов . В зависимости от энергетических затрат стоит задача составления правильных пищевых рационов. Количество принятых с пищей калорий должно соответствовать энергетическим тратам организма.

Необходимые количества энергии могут быть получены организмом за счет окисления и белков, и жиров, и углеводов. Однако, кроме энергетических нужд организма надо учитывать и пластические нужды, надо помнить и о суточной потребности каждого их питательных веществ.

Особенно важен вопрос о нормах белка в питании человека. Некоторые западные исследователи считают, что количество белка в пище должно быть таково, чтобы не нарушалось азотистое равновесие. Наши ученые считают, что всегда должен быть какой-то белковый резерв в организме, поэтому при составлении рациона надо ориентироваться не на белковый максимум, а на белковый оптимум, т.е. на то количество белка, которое полностью обеспечивает потребности организма, хорошее самочувствие, высокую работоспособность, достаточную сопротивляемость инфекциям, а для детей и потребности роста. Ежесуточный прием с пищей взрослым человеком в среднем 80-100 г. белка полностью удовлетворяют этим требованиям. Не менее 30% белка должно быть животного происхождения.

Для детей суточная норма белка на 1 кг веса должна быть повышена. Для 1-3 лет она составляет 55 г, 4-6 лет - 72 г., 7-9 лет - 89 г, 10-15 лет 100-106 г.

Пищевой рацион должен включать не менее 60 г. жиров и 400-500 г. углеводов. У взрослых при трехразовом питании 30% рациона должно приходиться на завтрак, 40% на обед и 25% на ужин. Необходимо помнить также и о минеральном составе, витаминах. заменимых и незаменимых аминокислотах и др.

Таким образом, при составлении пищевого рациона необходимо руководствоваться следующими принципами:

1. Соответствие энергетическим затратам.

2. Удовлетворение нормы белков, жиров и углеводов в питании.

3. Учет усвояемости пищевых веществ.

4. Минеральный и витаминный состав.

5. Учет состояния организма и способов приготовления пищи (диетология).

6. Правильное распределение рациона по часам суток.

7. Разнообразие пищи и ее органолептика.

8. Учет потребностей роста.

Основной обмен

Единицы измерения энерготрат организма

Количество выделяемой энергии согласно системе СИ следует выражать в Дж (1 ккал = 4,19кДж) или в эргах Но к медицинской практике в нашей стране и за рубежом пользуемся единицей калория, или ккал. Так как энерготраты - это поток энергии в единицу времени, то чаще всего используются такие размерности как ккал/мин, ккал/час, ккал/сут. Для оцен­ки величины основного обмена обычно применяется единица ккал/сутки, а для оценки энерго­трат в условиях производственной деятельности, в спорте, в быту - ккал/мин или ккал/час.

Кроме того, используются нормированные показатели - ккал/кг массы в единицу вре­мени или ккал/м 2 поверхности тела в единицу времени.

Комитет экспертов ФАО/ВОЗ, например, рекомендует использовать единицы, кратные величине основного обмена (ВОО). К примеру, в условиях физиологического покоя энерготраты испытуемого составляют 1700 ккал/сутки, а в условиях физиологической активности -3400 ккал/сутки, т.е. 2 ВОО.

Это энерготраты организма в условиях физиологического покоя, т. е. в положении «лежа» натощак (спустя 12-14 час. после приема пищи), при температурном комфорте (18-20°С) и эмоциональном покос. Это минимальные траты организма, необходимые для поддержания его жизнедеятельности. В среднем, мужчина, 35 лет, 165 см и массой тела 70 кг имеет величину основного обмена, равную 1700 ккал/сутки, или 1,18 ккал/мин, или 70,8 ккал/час. Иногда эту величину выражают как 1 ккал/кг массы в 1 час. У женщин в связи с отсутствие высокого содержания андрогенов величина основного обмена па 10 15% меньше, чему у мужчин.

На что тратится энергия, выделяемая в условиях физиологического покоя? Согласно, данным, представленным ВОЗ (1987), расходы ее таковы:

печень - 27%, мозг - 19%, сердце - 7%, почки - 10%, мышцы - 18%, прочие органы - 19% (итого 100%). В «прочие входят также энерготраты на терморегуляцию. Соответственно и потребление кислорода определяется энерготратами.

Для каких целей определяется величина основного обмена? Прежде всего, для оценки состояния организма. Известно, что при гиперфункции щитовидной железы (при чрезмерной продукции Т 3 и Т 4) ВОО существенно возрастает, а при гипофункции - наоборот, она снижается. Поэтому эндокринологи, особенно в ситуации, когда нет возможности определить содержание Т 3 и Т 4 оценивают ВОО.

Кроме того, величина основного обмена - это удобный ориентир для расчета величины физической нагрузки при производственной, спортивной и бытовой деятельности.

ВОО во многом зависит от пола, возраста, размеров тела. Так, величина основного об­мена у мужчин на 10-15% выше по сравнению с женщинами. Известно, что величина основного обмена в расчете на массу тела максимальна у новорожденных и грудных детей, а в последующем ВОО постепенно снижается, особенно после 20-25 лет.



Энерготраты в условиях физиологического покоя зависят от величины поверхности тела: чем она больше, тем выше энерготраты.

Для того, чтобы сравнить реальную ВОО с нормой, предложено рассчитывать должную величину основного обмена (ДВОО), или должный основной обмен (ДОО). Нормативы учитывают пол, возраст, рост и массу тела (и косвенно - площадь поверхности тела). В разных странах проводили нормативные исследования, и поэтому в настоящее время используется несколько вариантов нормативов ДОО. В нашей стране широко использу­ется метод определения ДОО по формулам или таблицам Гарриса-Бенсдикта. Существуют, два варианта этих таблиц - для мужчин и для женщин. В каждой из них имеются две под-1 таблицы. В первой подтаблице находят число, зависимое от массы тела, а во второй подтаблице - число, зависимое от роста и возраста. Сумма этих двух чисел дает искомую величину ДОО. Например, женщина 19 лет, рост 164 см, масса тела - 55 кг. Тогда: первое число-при массе 55 кг - 1181, второе - число при росте 164 и возрасте 19 - 234. Сумма 11811 + 234 = 1415 ккал/сутки.

Второй способ - определение по методу Дюбуа. Автором определены нормативы энерготрат в условиях физиологического покоя в расчете на м 2 поверхности тела в час для мужчин и женщин с учетом возраста. Например, в 20 лет для мужчин ДОО = 38,6 ккал/м 2 в час, для женщин - 35,3 ккал/м 2 в час.

Деление труда на категории тяжести дает возможность объективно оценить уровень
организации рабочего процесса на конкретном производстве. Если из 100 рабочих мест на 80 имеется тяжелый или очень тяжелый труд, то это означает, что труд организован нерационально.

Данные о величине общего обмена позволяют также определять калорийность суточного рациона. Так, если суточные энерготраты организма составляют 3000 ккал, то суточная калорийность пищи с учетом, что усваивается лишь 90% поступающих с пищей питательных веществ, должна составлять 3300 ккал.

Величина общего обмена отражает степень физической активности человека. Если она низкая - 2400-3500 ккал/сутки, то это свидетельствует о гипокинезии, или гиподинамии. Такое состояние опасно для здоровья: на этом фоне повышается риск раннего появления. атеросклероза, ишемической болезни сердца, язвенной болезни желудка и 12-перстной кишки и т.п. Многие кардиологи мира относят гипокинезию, или гиподинамию, к основным фак­торам риска (наряду с курением, алкоголем и нерационально организованным питанием) возникновения указанной патологии.

Чрезмерная активность, как показывает анализ заболеваемости спортсменов высокого класса, тоже не приносит большой пользы организму.

Так, где же золотая середина? Есть ли она? Одним из первых такой вопрос поставил
американский врач К. Купер. Он считал что для большинства людей существующая физическая нагрузка недостаточна, и ее надо усилить за счет занятий физкультурой. Многолет­ние наблюдения К. Купера показали, что частота заболеваний и смертность от них зависят от уровня физической активности:

Таблица1.

Зависимость смертности от степени подвижности

Цифры указывают число смертных случаев на 10 000 населения,

Числитель - мужчины, знаменатель - женщины.

Пока идет спор о величине нагрузки, японские исследователи утверждают, что за день чело­век должен совершить около 10 км ходьбы пешком или около 5-7 км в виде легкого бега. Отечественные физиологи считают, что норматив - 3,33 ккал/мин, или 4795 ккал/сут. По данным экспертов ФАО/ВОЗ (1987), для поддержания высокой работоспособности каждому человеку необходимо ежедневно по 20 минут совершать физическую активность интенсивностью 4-5 ккал/мин, или 5 ВОО.

Таким образом, физическая активность современного человека - это одна из важных Проблем долголетия и низкого уровня заболеваемости. Этот тезис профилактической ме­дицины.


Top