Опасный металл: как выглядят боеприпасы, которые война оставила в белорусской земле. Артиллерия Бронебойные каморные снаряды

«Мы пошли на вал - возвышение, образованное природой и укрепленное частоколом. Там уже толпились все жители крепости. Гарнизон стоял в ружье. Пушку туда перетащили накануне. Комендант расхаживал перед своим малочисленным строем. Близость опасности одушевляла старого воина бодростью необыкновенной. По степи, не в дальнем расстоянии от крепости, разъезжали человек двадцать верхами...

Люди, разъезжающие в степи, заметя движение в крепости, съехались в кучку и стали между собою толковать. Комендант велел Ивану Игнатьичу навести пушку на их толпу, и сам приставил фитиль. Ядро зажужжало и пролетело над ними, не сделав никакого вреда. Наездники, рассеясь, тотчас ускакали из виду, и степь опустела».

Так описывает Пушкин в повести «Капитанская дочка» стрельбу артиллерии Белогорской крепости. Ядро, выпущенное комендантом Белогорской крепости, перелетело. Но если бы даже Иван Игнатьич не промахнулся, все равно его ядро сделало бы немного. Мало чем отличалось оно от старинных каменных ядер. Это был просто-напросто чугунный шар чуть побольше крупного яблока. Конечно, такой снаряд мог вывести из строя неприятельского солдата лишь в том случае, если бы попал прямо в него. Но стоило ядру пролететь хотя бы в полуметре от человека, - и тот оставался жив и невредим. Только попадая в густую толпу, ядро могло вывести из строя несколько человек.

Надо, впрочем, сказать, что артиллерия Белогорской крепости не была последним словом техники даже для своего времени. В том же самом XVIII веке существовали уже разрывные снаряды. Такие снаряды - их называли гранатами и бомбами, - разрываясь, поражали живые цели осколками на площади радиусом в 10–15 шагов.

Чугунный шар отливали полым и наполняли порохом (рис. 84).

В оставленное отверстие - «очко» - гранаты вставляли деревянную трубку, наполненную медленно горящим пороховым составом, который загорался при выстреле и горел несколько секунд. Когда состав в {131} трубке догорал до конца и огонь доходил до пороха, происходил взрыв. Граната разрывалась на части и осколками поражала людей, находившихся поблизости.

Нередко случалось так. Пролетев с пронзительным воем, граната глухо шлепалась на землю, а пороховой состав в трубке еще продолжал гореть; это нетрудно было определить по его сильному шипению. Находились смельчаки, которые, рискуя жизнью, вырывали горящую трубку из упавшей поблизости гранаты, - и граната не разрывалась, не причиняла вреда.

Если хотели, чтобы граната разорвалась быстрее, перед заряжанием орудия попросту отрезали ножом часть деревянной трубки. Заметим кстати, что название «трубка» сохранилось и до наших дней, хотя сложный механизм, носящий это название, не имеет ничего общего со старинной деревянной трубкой, кроме назначения - разорвать снаряд. Как устроена современная трубка, вы узнаете, прочитав до конца эту главу. Так же, как граната, действовала и бомба. Надо сказать, что раньше «гранатами» и «бомбами» назывались разрывные снаряды совершенно одинакового устройства; все различие между ними заключалось только в весе: если снаряд весил меньше пуда (1 пуд = 16,4 килограмма), его называли гранатой, а если больше пуда, - то бомбой.

В шаровую гранату и даже бомбу можно поместить сравнительно мало пороха. Такая граната слаба. Она и летит плохо, и осколки ее разлетаются недалеко. Продолговатый снаряд гораздо выгоднее (рис. 85).

Как только сумели сделать устойчивым в полете продолговатый снаряд, от шаровых гранат и бомб сразу отказались. Они стали достоянием музеев. {132}

Но и дымный порох не так уж хорош для снаряжения гранаты: он обладает сравнительно небольшой силой, плохо разбрасывает осколки. В XIX и в начале XX века были изобретены гораздо более сильно действующие - бризантные (дробящие) взрывчатые вещества: пироксилин, мелинит, тротил, гексоген. Ими и стали вместо пороха наполнять снаряды. Такие снаряды значительно лучше разрушают постройки и окопы врага, а их осколки разлетаются с большой силой. Успехи техники - и в особенности химии - позволили выбрать взрывчатое вещество, которое почти безопасно при перевозке и в обращении, не боится толчков, ударов и уколов; оно взрывается только под действием особого «детонатора». Это вещество - тротил, которым теперь снаряжают почти все снаряды.

КАК ДЕЙСТВУЕТ ГРАНАТА

«Был теплый августовский день 1944 года. Советские войска заканчивали освобождение Белоруссии от гитлеровских захватчиков. Остатки разгромленных немецко-фашистских войск, отступая, цеплялись за оборонительные рубежи, которые они заранее подготовили. В этот день шел бой за большое село, в котором гитлеровцы старались удержаться во что бы то ни стало. Перед селом была болотистая река, и наши танки задержались перед ней; из-за этого они не могли помочь пехоте, которая уже захватила участок противоположного берега.

Я сидел среди ветвей высокой сосны на опушке леса. Это был мой наблюдательный пункт. Отсюда мне хорошо было видно все поле боя.

Я видел, что наша пехота залегла перед селом. А со стороны села отчетливо доносился треск вражеского пулемета. Этот пулемет мешал нашей пехоте продвигаться, он не давал поднять головы ни одному стрелку. А переправа танков все еще задерживалась, и помочь пехоте могла только артиллерия.

Но определить, где скрывается пулемет, было невозможно, несмотря на то, что его надоедливый треск был отчетливо слышен где-то совсем неподалеку.

Наши батареи вели сильный огонь по околице села, но пулемет все-таки не замолкал.

Вдруг одна из наших 152-миллиметровых гранат, случайно не долетев до села, разорвалась у самого корня старого дуба, одиноко стоявшего на небольшом пригорке между селом и опушкой кустов, где залегла наша пехота. Могучее дерево вздрогнуло и, словно нехотя, поднялось на воздух. На мгновение над столбом дыма беспомощно повисли вырванные из земли корни, и вслед за этим дуб тяжело рухнул на землю.

И тут-то я заметил то, что так долго искал: вражеское пулеметное гнездо (рис. 86).

Отчетливо стало теперь видно в бинокль перекрытие блиндажа: оно состояло из четырех слоев бревен, положенных один на другой. Пониже чернела длинная щель - бойница для пулемета. Все это отлично {133} маскировалось высокой травой и низко склоненными ветвями дерева, пока оно было цело.

Теперь, когда цель обнаружилась, уже нетрудно было перенести на нее огонь моих 152-миллиметровых гаубиц. Снаряды стали рваться один за другим около пулеметного гнезда. Через несколько минут один из разрывов окутал дымом всю цель - и в тот же миг, точно брызги воды, в которую с размаху бросили камень, во все стороны полетели бревна: снаряд попал прямо в цель.

Вражеский пулемет замолк.

Спасибо артиллеристам, - передал по телефону командир стрелковой роты.

Наша пехота стала быстро продвигаться вперед, и через несколько минут русское «ура» уже раздавалось на улицах села.

Вскоре бой затих. Улучив свободную минуту, я пошел взглянуть на «работу» моей любимой 152-миллиметровой гаубицы. Без труда я нашел знакомое место: вот вывороченный с корнями дуб; глубокими воронками, вырытыми нашими снарядами, усеяно вокруг все поле.

Я залез в одну из воронок. Она пришлась мне как раз по шею. Она была так велика, что по ее окружности могли бы разместиться 15 человек. {134}

А где же пулеметное гнездо с четырехслойным перекрытием? Его нет: на его месте - большая яма. На самом дне ее виднеются поломанные, расщепленные столбы: здесь-то и было пулеметное гнездо.

Шагах в десяти от ямы удалось мне разыскать наполовину засыпанный землей ствол пулемета; в другом месте валялся помятый стальной шлем. Вот все, что осталось от гитлеровских пулеметчиков и от их пулемета» (рис. 87).

Так рассказал нам офицер-артиллерист об одном из боевых эпизодов, участником которого ему довелось быть.

Вы видите, что современные гранаты действуют несравненно сильнее, чем ядра артиллерии Белогорской крепости.

Конечно, разрушительное действие гранаты зависит от ее калибра и веса и от того, как велик ее разрывной заряд. Например, в воронке от разрыва 76-миллиметровой гранаты в грунте средней плотности можно спрятаться всего лишь по колено, в воронке 122-миллиметровой гранаты - только по пояс, а в воронке 152-миллиметровой гранаты можно скрытно разместить несколько человек, стоящих в рост (рис. 88).

Зато разрыв 420-миллиметрового снаряда вырывает такую глубокую яму, что в ней поместился бы городской одноэтажный дом. Взрывом 420-миллиметрового снаряда выбрасывается больше 250 кубических {135} метров земли; чтобы вынуть столько земли, 60 хорошим землекопам надо работать целый день, а чтобы ее увезти, необходимо 30 железнодорожных платформ! Даже гигантский советский шагающий экскаватор сумеет вынуть такое количество земли только за 18 приемов.

Разрушительное действие гранаты, производимое газами разрывного заряда, называют ее фугасным действием.

О величине фугасного действия, о силе гранаты можно судить по объему воронки: чем больше объем воронки, тем больше, следовательно, и фугасное действие гранаты.

КАК МНОГО ЗНАЧАТ СОТЫЕ ДОЛИ СЕКУНДЫ

Фугасное действие гранаты зависит не только от ее калибра, но еще и от того, в какой момент она разорвется. Та самая 420-миллиметровая граната, которая вырывает воронку величиной с дом, может совсем не вырыть воронки, если только она разорвется не во-время.

Для получения наибольшего фугасного действия важно, чтобы граната разорвалась не в тот самый момент, когда она ударится о землю, а чуть позже,- уже углубившись в грунт. Небезразлично также, на какую именно глубину граната успеет уйти в землю: разрыв гранаты должен произойти не слишком рано и не слишком поздно.

Если граната до разрыва проникнет слишком глубоко в почву, может случиться, что взрыв окажется не в силах выбросить всю лежащую над снарядом землю; взрыв только спрессует, уплотнит почву, образуя {136} как бы пещеру в том месте, где произошел разрыв снаряда. Воронки при этом не получится вовсе.

Такой взрыв под землей называют камуфлетом (рис. 89). Чаще всего камуфлеты получаются в мягком грунте, например в болотистом.

Когда граната разорвется слишком рано, не успев углубиться в землю или другую преграду,- большая часть газов, образовавшихся при ее взрыве, уйдет вверх и в стороны; фугасное действие гранаты при этом будет невелико.

Высчитано, что фугасное действие будет наилучшим, если взрыв произойдет примерно через 3–5 сотых долей секунды после того, как граната коснулась земли.

В этом случае фугасное действие гранаты проявится в полной мере: упругие газы, образовавшиеся при взрыве, выбросят целый фонтан земли, выроют глубокую воронку, произведут большие разрушения.

Но возможно ли добиться, чтобы взрыв получился как раз во-время?

Оказывается, возможно. Для этого гранату надо снабдить очень точно работающим механизмом, который управлял бы ее взрывом, вызывал бы его в нужный момент.

Старинная деревянная трубка тут уже не годится: ведь нельзя точно рассчитать, когда она догорит, точности в сотые доли секунды от нее не добьешься.

К тому же, старинные гранаты шаровой формы почти не углублялись в землю, и фугасное действие их было ничтожно; в лучшем случае они разрушали силой взрыва лишь легкие наземные постройки.

КАК УСТРОЕНА ГРАНАТА

Современная граната устроена значительно сложнее старинной, но зато и действует несравненно сильнее и точнее.

Граната (рис. 90) или мина (рис. 91) наполнена очень сильным взрывчатым веществом - тротилом.

Чтобы вызвать взрыв тротила, наполняющего гранату, недостаточно толчка или укола; необходимо по соседству с тротилом взорвать другое вещество - тетрил. Взрыв тетрила вызывает взрыв и тротилового разрывного заряда в гранате или в мине.

Но и тетрил в свою очередь не взрывается от толчков и ударов; иначе гранаты и мины рвались бы в момент выстрела, еще не вылетев из канала ствола. Чтобы взорвать тетрил, надо произвести рядом с ним взрыв третьего вещества - гремучей ртути, которая, как известно, применяется в капсюлях.

Взрыв капсюля гремучей ртути вызывают разными способами. Если вы познакомитесь с двумя наиболее распространенными, то будете ясно представлять себе суть этого дела. {137}

ВЗРЫВАТЕЛЬ

Граната, а также и мина, снабжена остроумным, сложным и точным механизмом - взрывателем. Сущность действия взрывателя можно понять, если представить себе схему его устройства (рис. 92).

В головную часть снаряда ввинчивается трубка - корпус взрывателя. В корпус вставлен металлический стержень - ударник, который может перемещаться вдоль корпуса. Острый, как иголка, конец ударника - жало, располагается над капсюлем-детонатором в небольшом от него удалении. Тупой конец ударника выступает наружу. Когда снаряд, летящий головной частью вперед, падает на землю или попадает в преграду - стену дома, блиндаж и т. п., - тупой конец ударника натыкается на эту преграду; ударник подается назад, прокалывая своим острым жалом капсюль-детонатор; происходит взрыв заключенной в нем гремучей ртути, которую пронзило своим острием проникшее в капсюль жало. Взрыв этот немедленно передается тетриловому детонатору, а от него - разрывному заряду гранаты или мины. Такова сущность действия взрывателя. На деле он устроен значительно сложнее, чтобы предохранить людей, работающих со снарядом, {138}



от несчастных случаев, если снаряд или мину нечаянно уронят на землю.

Взрыватели другой системы вовсе не имеют жала. Основная часть такого взрывателя напоминает трубку примусного насоса; в ней располагается поршенек с кожаным воротником. Под поршеньком, на небольшом расстоянии от него, находится капсюль-воспламенитель, а ниже - капсюль-детонатор. При встрече мины с преградой поршень резко вдавливается в трубку - гильзу. От этого воздух в гильзе быстро сжимается, а от сжатия нагревается так сильно, что этим нагреванием и своим давлением вызывает взрыв капсюля (рис. 93).


{139}

МОЖНО ЛИ УПРАВЛЯТЬ РАЗРЫВОМ ГРАНАТЫ?

Каждый, кто бывал на войне, знает такие случаи: неприятельский снаряд или мина разрывается в двух-трех шагах от солдата, сидящего в окопе; могучая волна горячего воздуха подхватывает его, бросает на дно окопа: он теряет сознание, но, очнувшись, убеждается, что даже не, ранен, а только сильно ушиблен - «контужен» - и что его окоп целехонек.

В чем дело? Как могло случиться, что человек остался жив в двух шагах от разрыва снаряда и что окоп оказался неповрежденным?

Объяснение очень простое: граната или мина взорвалась, едва прикоснувшись к земле. Она дала много осколков, которые пролетели над окопом, даже не поранив сидящего в нем солдата. Так как снаряд взорвался, не углубившись в землю, его фугасное действие было ничтожно, он даже не разрушил земляного окопа. Зато у него было сильное осколочное действие. Но никто не находился вне окопа. Сидевший же в окопе солдат испытал на себе лишь действие взрывной волны.

Как мы говорили выше, для получения фугасного действия снаряда нужно заставить его углубиться в землю до того, как он разорвется,

Взрыватели, со схемой устройства которых вы только что познакомились, действуют мгновенно. Они обеспечивают снаряду хорошее осколочное действие, а фугасное действие в этом случае ничтожно. Это происходит потому, что взрыватель действует слишком быстро. Нужно замедлить его действие, дать снаряду время углубиться в землю и тогда лишь разорвать его.

Возможно ли так управлять разрывом снаряда?

Оказывается, возможно. Надо только немного усложнить устройство взрывателя, чтобы он мог действовать по-разному в разных случаях.

Представьте себе, что основные механизмы взрывателя остались без изменения, но тетриловый детонатор отодвинут от того капсюля, который взрывается в момент удара снаряда о землю: они разделены некоторым пространством так, что взрыв капсюля не передается сразу же тетриловому детонатору. Тогда капсюль вызовет своим взрывом не детонацию - не разрыв снаряда, а только появление огня внутри взрывателя - воспламенение: из капсюля-детонатора он превратится в капсюль-воспламенитель. Пропустим огонь от этого взрыва по каналу к другому капсюлю, который будет расположен по соседству с тетриловым детонатором и вызовет в нужный момент его взрыв. Этот второй капсюль окажется, следовательно, капсюлем-детонатором. Но пока еще мы ничего не изменили по существу: луч огня от капсюля-воспламенителя почти мгновенно дойдет по каналу до капсюля-детонатора, взорвет его, а с ним - тетриловый детонатор и разрывной заряд. Действие взрывателя все еще будет почти мгновенным, у снаряда будет хорошее осколочное действие и слабое фугасное. Теперь закроем канал, {140} соединяющий оба капсюля; это нетрудно сделать при помощи перекрывающего крана. Повернем кран так, чтобы между капсюлями не было прямого сообщения по каналу (рис. 94). Для луча огня оставим другой путь от капсюля-воспламенителя к капсюлю-детонатору - более длинный окольный путь по окружному каналу, а посередине этого окружного канала поставим «замедлитель» - столбик медленно горящего порохового состава. Тогда луч огня от капсюля-воспламенителя совсем не пройдет по закрытому прямому каналу, а в окружном канале дойдет лишь до замедлителя и зажжет его. Когда замедлитель сгорит, луч огня от него проникнет по окружному каналу к капсюлю-детонатору и вызовет его взрыв, а с ним и взрыв тетрила и разрывного заряда. Но за время, пока горит замедлитель, снаряд успеет углубиться в землю.


Не подумайте, что замедлитель горит очень долго: чтобы сгореть, ему нужно всего лишь от трех до пяти сотых долей секунды. Это такой маленький промежуток времени, которого не улавливает человеческое сознание. Но этого времени вполне достаточно, чтобы снаряд успел углубиться в преграду и только после этого разорваться. В этом случае снаряд произведет разрушение силой газов, образовавшихся при взрыве разрывного заряда; вот теперь у снаряда окажется хорошее фугасное действие, но зато уменьшится осколочное действие, так как большая часть осколков останется внутри воронки.

Есть и другой способ управлять разрывом снаряда; с этим способом вы познакомитесь, когда прочитаете об устройстве взрывателя марки КТМ-1. {141}

КАК УСТРОЕН ВЗРЫВАТЕЛЬ КТМ-1

До сих пор мы рассказывали о действии взрывателя только в самых общих чертах, не вдаваясь в подробности; поэтому у вас может возникнуть законный вопрос: а как же обращаться с взрывателем при перевозке снарядов или мин? Ведь чуть толкнешь взрыватель, он сразу же подействует (или, как говорят артиллеристы, «сработает»); от этого произойдет разрыв гранаты и могут пострадать свои люди.

Но на деле это не так. Конструкторы сделали обращение с взрывателем вполне безопасным. Достигается это тем, что в нем помещены дополнительные детали, которые и обеспечивают его безопасность.


Для примера познакомим вас более подробно с устройством очень распространенного взрывателя марки КТМ-1. Создал этот взрыватель советский конструктор М. Ф. Васильев. Основные части взрывателя КТМ-1 и их взаимное расположение показаны на рис. 95. Обратите внимание на то, что у этого взрывателя не один ударник, а два: один - головной, а другой - инерционного действия.

У взрывателя КТМ-1 два действия: мгновенное и замедленное; характер действия зависит от того, снят или не снят перед заряжанием колпачок взрывателя: если снят, - получается осколочное действие снаряда; если не снят, - фугасное. {142}

Как действует взрыватель КТМ-1, проследите по рисункам (рис. 96). Представьте себе, что колпачок снят с взрывателя. В момент выстрела по инерции оседает вниз головной ударник; оседая, он сжимает пружину. В этот же момент массивный медный цилиндрик-разгибатель тоже опускается по инерции и садится на лапчатый предохранитель, который для наглядности показан отдельно на рис. 97. При этом отогнутые наружу концы лапок предохранителя заскакивают за кольцевой уступ, сделанный внутри разгибателя, и таким образом разгибатель прочно скрепляется с лапчатым предохранителем. Но лапчатый предохранитель в свою очередь надет на инерционный ударник. И получается, что все эти три детали - разгибатель, лапчатый предохранитель и инерционный ударник - теперь прочно скреплены друг с другом при помощи лапок предохранителя и начинают действовать сообща как одно целое.

Но вот снаряд вылетел из ствола, действие {143} первого толчка прекратилось. Пружина, сжатая в момент выстрела головным ударником, разжимается и толкает вперед головной ударник, возвращая его в первоначальное положение. А другая пружина толкает вперед инерционный ударник, прочно скрепленный с разгибателем; при этом капсюль приближается к жалу головного ударника. Это положение сохраняется во все время полета снаряда. Едва лишь снаряд ударится о преграду, головной ударник быстро продвинется назад - навстречу капсюлю, расположенному на инерционном ударнике, и наколет его; последует взрыв капсюля-воспламенителя. Луч огня от этого взрыва мгновенно проникнет к капсюлю-детонатору; взрыв капсюля-детонатора передастся детонатору, а от него - разрывному заряду. Все это произойдет почти мгновенно, и поэтому получится осколочное действие гранаты.

Если перед заряжанием колпачок взрывателя не был снят, то в момент удара снаряда о преграду головной ударник останется на своем месте, а нижний - инерционный ударник - по инерции продвинется вперед, и капсюль наколется на жало (см. рис. 96, нижняя фигура). На это нужно больше времени, чем в том случае, когда колпачок снят; взрыватель будет действовать медленнее, снаряд глубже проникнет в преграду до того, как сработает взрыватель, и получится фугасное действие снаряда.

Существует еще много взрывателей разных типов; они различаются устройством деталей, но суть их действия одна и та же.

ОСКОЛОЧНОЕ ДЕЙСТВИЕ ГРАНАТЫ

Что может сделать граната при взрывателе, установленном на осколочное действие?

Корпус 76-миллиметровой гранаты весит около 5 килограммов. Он разрывается примерно на 1000 осколков. Часть из них - очень мелкие осколки, весом менее 5 граммов, - не может принести большого вреда: они в состоянии ранить только человека, который окажется совсем близко от места, где разорвался снаряд. А остальные осколки - более крупные - являются «убойными». Разлетаясь в стороны, они способны вывести из строя человека, лошадь, повредить неприятельскую машину или орудие.

Осколки при этом разлетаются не одинаково во все стороны: главным образом вправо и влево, несколько меньше - вперед и еще меньше - назад (рис. 98). {144}

Площадь, на которой осколки гранаты наносят противнику достаточно надежное поражение, с некоторым приближением можно принять за прямоугольник.

Мерой осколочного действия гранаты или мины считается площадь прямоугольника, в пределах которого при разрыве одной гранаты будет поражено не менее 50% находящихся на нем целей. Площадь такого прямоугольника принято называть площадью (или зоной) действительного поражения.

Отдельные осколки падают и далеко за пределами площади действительного поражения; нередко они летят на 100–200 метров от места разрыва гранаты. А отдельные осколки снарядов более крупных калибров - например, 152-миллиметровых - залетают иногда и еще дальше: за 300–400 метров от места разрыва снаряда. Но когда артиллеристы сравнивают осколочное действие гранат или мин различных калибров, они имеют в виду не такие отдельные осколки, а ту площадь, в пределах которой поражается не менее половины находящихся на ней целей, то-есть площадь действительного поражения.

Осколки 76-миллиметровой гранаты наносят действительное поражение на площади 450 квадратных метров, то-есть на таком участке, какой примерно занимает отдельный двор с надворными постройками и {145}


небольшим огородом (рис. 99); осколки 152-миллиметровой гранаты - на площади 1750 квадратных метров, то-есть на одной шестой части гектара (рис. 100).

Чем больше угол, под которым снаряд встречает цель - угол встречи, - тем больше будет поражающих осколков. Наилучшее осколочное действие получается при углах встречи, близких к 90° (от 75° и больше).

Мина, выпущенная из миномета, летит по очень крутой траектории и падает на землю под углом, близким к 90°. Осколки ее корпуса разлетаются почти равномерно во все стороны (рис. 101); поэтому мина наносит действительное поражение на площади, которая по форме представляет собою круг. С размерами этого круга для мины каждого калибра вы познакомитесь, внимательно рассмотрев рис. 102. На нем же

показаны для сравнения площади действительного поражения осколками гранат разных калибров. Этот рисунок наглядно показывает замечательное свойство мины: ее осколочное действие значительно сильнее, чем у гранаты такого же калибра. Это происходит потому, что граната падает менее круто (рис. 103), и большая часть ее осколков не наносит поражения: одни попадают в землю у самого места падения гранаты, другие улетают вверх и падают на землю, уже потеряв убойную силу. Таким образом, граната или мина, снабженная современным взрывателем, способна не только разрушать окопы, блиндажи и другие сооружения: своими осколками она хорошо поражает и живые цели.

БРОНЕБОЙНЫЙ СНАРЯД

Бывают случаи, когда особенно важно, чтобы граната еще до разрыва пробила твердую преграду и только после этого разорвалась. Попасть, например, в танк - это только полдела; надо еще сделать так, чтобы граната пробила броню и разорвалась внутри танка: только тогда она сильно попортит танк, разрушит его двигатель, выведет из строя его экипаж, сделает танк небоеспособным.

Но обыкновенная граната, имеющая сравнительно слабую головную часть, сама разбивается о крепкую броню. Ее разрыв происходит снаружи танка и часто не причиняет ему большого вреда. Впрочем, разрыв гранаты крупного калибра может причинить танку серьезный ущерб, если даже броня и останется в целости: от сотрясения при взрыве большого разрывного заряда экипаж танка может быть контужен, а вооружение танка повреждено; взрывная волна иногда даже срывает с танка башню и совершенно выводит танк из строя.

Но для орудий средних и малых калибров необходимы специальные «бронебойные» снаряды, которые устроены иначе, чем обыкновенные. Такой снаряд должен быть очень прочным, особенно его головная часть; ее делают толстой и сплошной, а взрыватель ввинчивают в дно (рис. 104). Такой взрыватель называется донным.

Самый снаряд делают из лучшей закаленной стали, а для того {148} чтобы не допустить разрушения всего снаряда в момент удара, на головной части его вытачивают подрезы треугольного сечения (см. рис. 114).

Способы изготовления такой особенно прочной стали разработал знаменитый русский ученый-металлург Д. К. Чернов; он описал их в своем труде «О приготовлении стальных бронебойных снарядов», законченном в 1885 году. Д. К. Чернов имел в виду изготовление снарядов, способных пробить броню кораблей; но его способ пригодился и в наши дни для выделки снарядов противотанковых орудий.

Прочный бронебойный снаряд пробивает броню танка. Взрыватель бронебойного снаряда рассчитывают на замедленное действие, чтобы дать снаряду время проникнуть сквозь броню внутрь машины и там уже разорваться.


Проникание снаряда в твердую преграду и разрушение преграды силой удара называют его ударным действием (рис. 105). Поэтому и говорят о бронебойном снаряде, что он имеет хорошее ударное действие.

Но одной лишь массивности бронебойного снаряда недостаточно, чтобы обеспечить его надежное действие. Участники одного из боев рассказывают про такой случай.

Вражеское орудие внезапно открыло огонь по одному из наших танков. Страшной силы удары один за другим потрясли могучую боевую машину - это ударялись в танк снаряды противника. Но разрывы их происходили почему-то в стороне от танка, в нескольких метрах от него. Броня нигде не была пробита, танк оставался невредимым и продолжал двигаться. Тем временем экипаж танка обнаружил неприятельскую пушку и несколькими удачными выстрелами из своего орудия подбил ее. Пушка замолчала. {149}

Что же спасло танк? Почему попадавшие в него снаряды не пробивали броню, не рвались внутри танка? Дело в том, что снаряд надежно пробивает броню, если попадает в нее под прямым углом, то-есть
когда угол встречи равен прямому или близок к нему (рис. 106). Когда же угол встречи невелик и снаряд ударяет наискось, тогда он может скользнуть по гладкой поверхности брони и отлететь в сторону. Как говорят артиллеристы, при малом угле встречи снаряд рикошетирует.

Очевидно, гитлеровские артилле­ристы стреляли не слишком искусно, - все их снаряды попадали в скошенные плиты брони советского танка и рикошетировали. Это обстоятельство и помогло нашему танку остаться невредимым.

Чтобы уменьшить рикошети­рова­ние бронебойных снарядов крупного калибра, их специальные «бронебойные» наконечники делают тупыми (см. рис. 104). Тупой «бронебойный» наконечник изготовляется из сравнительно мягкого металла; это позволяет ему не скользнуть по броне, а как бы прилипнуть к ней; поэтому снаряд, снабженный таким наконечником, обычно не рикошетирует, если даже угол встречи невелик. Но это - не единственное назначение «бронебойного» наконечника; кроме того, он не позволяет корпусу снаряда расколоться от сильного удара о броню, потому что мягкий металл наконечника смягчает удар. Расплющиваясь при ударе о крепкую броню, сравнительно мягкий тупой наконечник сильно нагревается и становится из-за этого еще более мягким; таким образом, он служит как бы «смазкой» для корпуса снаряда, создавая ему лучшие условия для пробивания брони. Но тупой наконечник испытывал бы при полете снаряда громадное сопротивление воздуха. Поэтому сверху на него надевают еще один наконечник - слабый, но хорошо обтекаемый баллистический наконечник (см. рис. 104), который легко разрушается, едва снаряд коснется цели. Значение его вы поймете лучше, когда прочтете главу шестую. Такое устройство бронебойного снаряда создал и предложил герой русско-японской войны адмирал С. О. Макаров.

В дальнейшем бронебойные снаряды с наконечниками заимствовали у русских англичане, немцы, французы, американцы, которые многому учились у русской армии и флота. {150}

СТРЕЛЬБА НА РИКОШЕТАХ

Рикошет вреден, когда нужно стрелять по броне. Но артиллеристы умеют извлечь пользу и из рикошета.

Вы уже знаете, что при взрывателе замедленного действия на мягком грунте получаются глубокие воронки и даже камуфлеты. Но это бывает при больших углах встречи гранаты с землей. При малом же угле встречи - не более 18–22 градусов - граната с взрывателем замедленного действия скользнет по земле, оставив в ней борозду в 1–2 метра длиной, и полетит дальше. Точь в точь также летит, отскакивая от воды, камень, если он умело и сильно брошен под малым углом к ее поверхности (рис. 107).


Камень может подпрыгнуть в этом случае несколько раз. Граната же после рикошета пролетит недолго: после удара о землю она под действием взрывателя тотчас же взорвется.

Чаще всего разрыв происходит на высоте в 3–4 метра над землей, метрах в 10–15 от борозды, которую граната прочертила на земле. Осколки гранаты, разорвавшейся после рикошета, наносят действительное поражение солдатам противника примерно на той же площади, что и при стрельбе гранатой с установкой взрывателя на осколочное действие.

Но стрельба на рикошетах имеет и преимущества. Осколки гранаты, разорвавшейся на земле, могут поражать лишь открытые цели; солдат, {151} укрывшихся в окопах, они поразят лишь в том случае, когда граната разорвется в самом окопе. Осколки же гранаты, рвущейся в воздухе,
могут поразить и тех солдат, которые укрылись в окопах, ямах или оврагах с крутыми скатами (рис. 108).

Вот это преимущество рикошетирующей гранаты и используют артиллеристы для поражения окопавшейся пехоты противника в тех случаях, когда можно получить углы встречи снаряда с землей менее 18–22 градусов и когда в районе цели достаточно твердый грунт.

ПОДКАЛИБЕРНЫЙ СНАРЯД

Чтобы усилить действие бронебойного снаряда, надо постараться прежде всего увеличить скорость его полета. Вы знаете из физики, что энергия тела равна половине его массы, умноженной на квадрат скорости. Если массу снаряда увеличить вдвое,- его энергия возрастет вдвое, а если увеличить вдвое его скорость, - энергия снаряда возрастет вчетверо.

Вот почему конструкторы стремятся прежде всего увеличить скорость полета бронебойных снарядов.

Но остроумно решить эту задачу удалось не профессиональному конструктору, а отставному русскому фельдфебелю (старшине) Назарову, который еще в 1912 году изобрел подкалиберный снаряд. Царские чиновники не оценили большого практического значения этого снаряда и отклонили изобретение Назарова, а через год изобретение подкалиберного снаряда запатентовал немецкий «пушечный король» Крупп: военные тайны плохо сохранялись в царском военном министерстве.

Что это за снаряд и как он действует?

Прежде всего надо отметить, что подкалиберный снаряд совсем не имеет разрывного заряда: он наносит поражение только своим прочным сердечником (рис. 109), калибр которого значительно меньше калибра орудия; отсюда и произошло название снаряда.

Сердечник изготовляют из очень твёрдого и тяжелого сплава, а корпус снаряда - из обычной стали. Баллистический наконечник делают из легкого металла или даже из пластмассы. {152}

Уменьшению веса подкалиберного снаряда способствует и его своеобразная форма: если снять с него баллистический наконечник, то по своим очертаниям он напоминает катушку для ниток.

В результате вес подкалиберного снаряда получается раза в два меньше веса обычного бронебойного снаряда такого же калибра: например бронебойный снаряд 76-миллиметровой пушки весит 6,5 килограмма, а ее же подкалиберный снаряд - только 3,02 килограмма.

Но какое же значение имеет малый вес подкалиберного снаряда?

Боевой заряд орудия способен дать снаряду толчок определенной силы. Если один раз израсходовать эту силу, чтобы бросить более тяжелый снаряд, а в другой раз, - чтобы бросить более легкий снаряд, то окажется, что более легкий снаряд, как имеющий меньшую массу, при толчке той же силы получит большую скорость, чем тяжелый. И действительно: начальная скорость 76-миллиметровой осколочно-фугасной гранаты 680 метров в секунду, а подкалиберного снаряда к той же пушке - 950 метров в секунду. Еще больше эта разница для снарядов 57-миллиметровой противотанковой пушки,

А чем больше скорость снаряда, тем более толстую броню он в состоянии пробить. И в самом деле, подкалиберный снаряд пробивает броню почти вдвое толще той, которую пробивает обыкновенный бронебойный снаряд.


При попадании в танк мягкий наконечник и корпус подкалиберного снаряда разрушаются, а твердый сердечник пробивает броню и проникает внутрь машины. При этом корпус подкалиберного снаряда становится (при попадании снаряда в цель) такой же «смазкой» для сердечника, {153} как тупой наконечник бронебойного снаряда, изобретенный С. О. Макаровым, для корпуса этого снаряда.

Пока сердечник снаряда пробивает броню, он теряет большую часть своей скорости, но зато в это же время сильно нагревается от трения и приобретает температуру до 900 градусов. Нагреваются при этом и осколки пробиваемой брони.

Проникнув внутрь неприятельского танка, подкалиберный снаряд действует, словно большая пуля; осколки пробитой им брони тоже наносят поражение экипажу танка. От высокой температуры загораются пары бензина внутри танка, и в машине начинается пожар. Попав в баки с горючим или в боеприпасы, подкалиберный снаряд вызывает пожар или взрыв.

Но и у подкалиберного снаряда есть отрицательная сторона: из-за своей легкости и невыгодных очертаний он быстро теряет скорость на полете; поэтому он годится только для стрельбы на малых расстояниях - 300–500 метров. Почему это происходит, вы поймете, прочитав главу шестую.

ГАЗОВАЯ СТРУЯ, ПРОБИВАЮЩАЯ БРОНЮ

На выставке трофейного оружия в Центральном парке культуры и отдыха в Москве в свое время привлекали внимание посетителей доставленные в Москву с полей сражений подбитые советской артиллерией немецко-фашистские танки. Тут были и средние танки Т-3, и тяжелые танки Т-4 первых лет войны; были тут и танки «тигр», «пантера» и самоходно-артиллерийские установки «фердинанд» с лобовой броней в 200 миллиметров, впервые появившиеся на полях сражений летом 1943 года, и «королевские тигры» образца 1944 года, - словом, весь арсенал гитлеровской танковой техники. В каждом из этих танков зияли пробоины - следы работы советской артиллерии. Толста была броня вражеских танков, изготовленных в последние годы войны; но не было такой толстой брони, которую не пробил бы советский бронебойный снаряд.

С особенным интересом разглядывали посетители выставки своеобразные пробоины, которые можно было наблюдать на некоторых трофейных танках: края этих пробоин имели такой вид, словно броня была расплавлена.

Чем же расплавили такую толстую броню? - недоумевая, задавали друг другу такой вопрос многие посетители выставки. И если в толпе посетителей находился в это время артиллерист, он говорил, гордясь советской техникой, сумевшей преодолеть силу фашистских бронированных чудовищ:

Это работа нашего бронепрожигающего снаряда! Чистая работа, не правда ли?

Бронепрожигающий снаряд! Что же это такое, как же он прожигает броню? Ведь чтобы расплавить сталь, ее надо нагревать в мартеновской {154} печи до очень высокой температуры - 1400–1500 градусов, и притом поддерживать такую температуру в течение долгого времени; а снаряд ведь разрывается мгновенно. Когда же он успевает расплавить сталь? И какая же должна развиваться температура при этом взрыве, чтобы за несколько тысячных долей секунды, в течение которых разрыв снаряда действует на броню танка, эта броня успела так нагреться, что расплавилась? Наверное, снаряд наполнен каким-то особенным веществом?

Вот те вопросы, которые невольно возникали у посетителей выставки при взгляде на своеобразные пробоины в броне фашистских танков.

Артиллеристы охотно удовлетворяли любознательность посетителей.


Бронепрожигающий снаряд наполнен самым обычным взрывчатым веществом, которым снаряжаются и другие снаряды. Нет никакой хитрости и в его устройстве, за исключением всего лишь одной особенности: снаряд заполнен взрывчатым веществом не сплошь; в верхней части разрывного заряда оставлено углубление, похожее по форме на обыкновенную воронку (рис. 110). Вот это-то углубление в разрывном заряде и играет, оказывается, огромную роль; оно коренным образом изменяет действие снаряда.

Вы уже знаете, что при наличии во взрывчатом веществе воронкообразной выемки газы разрывного заряда не расходятся равномерно во все стороны, а, сталкиваясь, сливаются в одну мощную струю, направленную от выемки (рис. 111). Получается направленная газовая струя; она напоминает сильную струю воды из брандспойта, но только действует, разумеется, неизмеримо сильнее водяной струи. Именно эта мощная струя сильно нагретых газов вместе с мелкими частицами металлической {155} воронки, ударяя по броне с огромной силой, проламывает ее (см. рис. 110). При этом она так нагревает броню в месте удара, что края пробоины оказываются подплавленными, как будто броня не пробита, а прожжена. Отсюда и произошло название снаряда - бронепрожигающий. Название это не совсем правильно: оно отражает внешний признак действия снаряда, а не его сущность. Сущность же действия снаряда заключается в сильном ударе газовой струи по броне, в его так называемом кумулятивном действии. Снаряды этого типа так и называют теперь - кумулятивными.

Замечательная особенность кумулятивного снаряда заключается в том, что он пробивает броню не корпусом или сердечником, а только силой удара газов и мелких частиц металлической воронки. Поэтому ни прочность корпуса снаряда, ни скорость его полета не имеют того значения, как для обычных бронебойных снарядов. Летит кумулятивный снаряд со сравнительно небольшой скоростью.


Кумулятивному снаряду даже вредна большая скорость: при большой скорости снаряд мог бы разбиться о броню прежде, чем газы успели бы собраться в мощную струю.

Есть у кумулятивного снаряда и еще одна особенность: детонатор помещается у него возле дна, а не в головной части: оказывается, что такое положение детонатора дополнительно усиливает направленное действие струи газов. Пока луч огня идет по сквозному каналу от взрывателя к детонатору, тонкая головная часть снаряда успевает разбиться о броню и снаряд подходит вплотную к броне своим воронкообразным углублением. Действие направленной струи газов получается при этом настолько сильным, что газовая струя пробивает толстую стальную броню.

СТРЕЛЬБА ПО БЕТОНУ

В конце 1939 года финское правительство, подстрекаемое американо-английскими и немецкими империалистами, начало военные действия против Советского Союза и создало угрозу Ленинграду. Чтобы обеспечить безопасность этого важного промышленного центра, советские войска, {156} перейдя в наступление, в декабре подошли вплотную к укреплениям линии Маннергейма на Карельском перешейке. Железобетонные долговременные сооружения преградили путь нашим войскам: за толстой железобетонной стеной каждого такого сооружения стояли пулеметы и орудия; сквозь маленькие узенькие окошечки - амбразуры - они вели убийственный огонь. Только ценой огромных потерь можно было бы продолжать наступление, пока эти укрепления оставались целы.

Вот почему решено было сперва разрушить долговременные сооружения и лишь после этого наступать дальше; но разрушить их оказалось не так-то просто. Противник тщательно спрятал и прикрыл землей и камнями каждое железобетонное укрепление, построил он немало и ложных сооружений.

Поэтому, прежде чем разрушать бетон, надо было убедиться, что сооружение находится именно здесь, а затем снять с бетона покрывавшую его землю и камни. Вот почему сначала по всем подозрительным местам открыли огонь знакомыми уже нам обыкновенными фугасными гранатами.

Со скрежетом и треском рвались эти гранаты в тех случаях, когда они попадали в бетонные стены. Но укрепления продолжали стоять непоколебимо и сеять смерть. Больше того, солдаты пехоты видели своими глазами, как тяжелые гранаты вместо того, чтобы пробивать стены укреплений, рвались в воздухе, отскакивая, как мяч, от этих прочных стен.

Тут-то и родилась легенда о «резиновых огневых точках». Толстый слой резины, - уверяли некоторые словоохотливые «очевидцы», - покрывает каждое из укреплений, от этой резины снаряды отскакивают и рвутся в воздухе, не причиняя укреплениям никакого вреда.

Конечно, артиллеристы только посмеивались, слушая такие россказни. Они прекрасно знали, в чем тут дело: обыкновенная граната не в силах пробить толстый слой крепкого бетона; больше того, она обычно не в силах даже углубиться в бетонную стену: ее недостаточно прочный для этого корпус разрушается при ударе о бетон, и разрыв, действительно, происходит в воздухе, а если угол встречи недостаточно велик, то снаряд рикошетирует и опять-таки разрывается в воздухе; никакой резины, конечно, тут и в помине нет.

Предназначенная для разрушения земляных укреплений фугасная граната не годится для разрушения бетона. Для этого необходим специальный снаряд. И такой снаряд имеют артиллеристы.

Как только бетон «вскрыт», то-есть стрельбой фугасными гранатами с него снята прикрывающая укрепление «подушка» из земли и камня, в ход идут бетонобойные снаряды.

Подобно бронебойному снаряду, бетонобойный снаряд делают из самой прочной стали, его головную часть закаляют. Взрыватель, рассчитанный на замедленное действие, помещают в донной части снаряда (рис. 112). Но все же бетон не так прочен, как броня, поэтому головная {157} часть и стенки бетонобойного снаряда могут быть тоньше, чем бронебойного. Значит, взрывчатого вещества в такой снаряд можно поместить больше, и действие его при разрыве будет сильнее.

Однако, как и при стрельбе по броне, одна лишь прочность и могущество снаряда не обеспечивают успеха стрельбы; надо добиться еще и того, чтобы угол встречи снаряда с поверхностью бетона был не меньше 60 градусов, иначе снаряд не углубится в бетон, а отколет от него лишь незначительный слой или, еще хуже, рикошетирует и разорвется в воздухе, не причинив цели никакого вреда.

Зато, если бетонобойные снаряды крупного калибра попадают удачно, они в состоянии разрушить самое прочное сооружение. Бетонобойные снаряды артиллерии Советской Армии наглядно засвидетельствовали это при прорыве линии Маннергейма в войне с белофиннами зимой 1939/40 года, а затем и в многочисленных боях Великой Отечественной войны. При помощи этих снарядов Советская Армия брала даже самые сильные крепости, в том числе и Кенигсберг (ныне Калининград) - крепость, которую гитлеровцы считали совершенно неприступной. Бетонные стены толщиной в 1,5 метра, скрепленные десятью слоями арматуры из трехсантиметрового круглого железа, оказывались ненадежной защитой от огня советской артиллерии. После обстрела эти стены имели неприглядный вид: повсюду бетон был изгрызан и обколот настолько, что спутанные и изогнутые силой разрывов снарядов железные стержни арматуры торчали в разные стороны, словно измятая ногами великана гигантская трава (рис. 113). А там, где в одно и то же место попадало два или три снаряда, в толще стены зияла сквозная брешь. Гарнизон укрепления либо не выдерживал непрерывных ударов огромной силы, постепенно разрушавших крышу и стены укрепления, и спасался бегством, либо погибал под обломками. В том и другом случае разбитое бетонобойными снарядами сооружение переставало служить препятствием для наступления нашей пехоты. {158}


СНАРЯД, ОСТАВЛЯЮЩИЙ СЛЕД ПРИ ПОЛЕТЕ

Когда приходится стрелять по цели, которая быстро движется - по самолету или по танку, - полезно видеть весь путь снаряда, всю его траекторию: это облегчает пристрелку, так как стреляющему видно, пролетел ли снаряд выше или ниже цели, справа или слева от нее и в какую сторону надо повернуть орудие, чтобы попасть при следующем выстреле.

Но обычный снаряд не виден при полете.

Вот почему изобрели особые снаряды, оставляющие след в воздухе,- трассирующие снаряды (рис. 114).

Такой снаряд трассирует, то-есть отмечает свой путь струйкой цветного дыма - красного, зеленого, желтого. Для этого запрессовывают особый состав в корпус донного взрывателя или в специальный трассер (см. рис. 114). Состав этот называется трассирующим.

При выстреле от пламени пороховых газов боевого заряда трассер воспламеняется и горит во время полета снаряда, оставляя за собой светящийся или дымовой след, который как бы прочерчивает в воздухе путь снаряда.

Трассирующие снаряды применяются чаще всего при стрельбе на малокалиберных орудий по самолетам и по танкам. {159}

Недолеты и неразрывы,- радовались артиллеристы.

В это мгновение ветерок донес приторный аромат: он напоминал сладковатый запах лежалых фруктов.

Еще 30 секунд. Еще такая же батарейная очередь. Сладковатый запах становится нестерпимо приторным. А со следующей очередью - уже становится трудно дышать, слезятся глаза, делается душно... Светлое облачко, словно туман, потянулось на батарею. Теперь всем стало ясно.

Газы! - раздается команда, и все хватаются за противогазы...» Так вспоминает участник первой мировой войны о первом обстреле его батареи химическими снарядами. {160}

По устройству химический снаряд не отличался от гранаты (рис. 115). Но он был наполнен вместо взрывчатого - отравляющим веществом (сокращенно ОВ). Отравляющее вещество помещали обычно в снаряд в жидком виде; часть каморы снаряда оставляли незаполненной на случай расширения вещества при повышении температуры. Снаряд делали герметическим. Его снабжали взрывателем мгновенного действия, чтобы он разорвался, не углубляясь в землю, и отравляющее вещество свободно распространялось в воздухе.

При падении химический снаряд не разлетался на осколки и не поражал ими, как обычная граната: силы взрывателя с детонатором хватало лишь на то, чтобы оторвать головную часть снаряда и разломать, развернуть его корпус.

Если отравляющее вещество было нестойкое, то оно при разрыве снаряда почти полностью примешивалось к воздуху, образуя облако, которое двигалось по ветру.

Если снаряд был снаряжен стойким отравляющим веществом, то оно чаще всего разбрызгивалось в виде капель. Эти капли испарялись постепенно - нередко в течение нескольких дней.

Один снаряд с нестойким отравляющим веществом создавал облако от 20 до 1000 кубических метров, в зависимости от калибра (от 75 до 155 миллиметров), а один снаряд со стойким отравляющим веществом заражал площадь от 20 до 200 квадратных метров.

Разрыв одного химического снаряда не мог принести большого вреда: отравленный участок был невелик; если снаряд содержал нестойкое ОВ, оно быстро рассеивалось. Обычно нужен был огонь нескольких батарей, чтобы создать и поддержать достаточно густое облако ОВ.

Изготовляли снаряды и смешанного действия: кроме взрывчатого вещества, добавляли в снаряд небольшое количество твердого отравляющего


{161}

вещества - и получался осколочно-химический снаряд. Он поражал осколками почти так же, как и обыкновенная граната, но в то же время не позволял работать без противогазов.

Действие химических снарядов было довольно разнообразное: в них применялись удушающие, слезоточивые, чихательные, ядовитые отравляющие вещества; применялись и вещества нарывного действия: попадет капелька такого вещества на кожу, и через несколько часов на ней образуется нарыв, а потом язва. Применяли и смесь этих веществ.


Применение на войне отравляющих веществ запрещено международными конвенциями; но Германия императора Вильгельма не больше считалась с международными договорами, чем гитлеровская Германия, и в 1915 году немцы первыми применили отравляющие вещества; а после этого начали применять их и другие воюющие страны.

В 1935 году фашистская Италия применила химические снаряды против абиссинцев. Гитлеровская армия готовилась применить отравляющие вещества во второй мировой войне, но этого не было сделано из опасения, что тогда ее противники применят отравляющие вещества против нее самой. Вновь применили химические снаряды в 1951 году войска американских империалистов против корейской Народной армии.

Если отравляющее вещество заменить в химическом снаряде дымообразующим веществом, например фосфором, то при разрыве снаряда образуется густой дым, который помешает наблюдать за действиями войск и метко стрелять. Наблюдательные пункты, пулеметы, орудия будут, как принято говорить, «ослеплены» этим густым, непроницаемым дымом. {162}

Такие снаряды называют дымовыми (рис. 116). Их применяли, и во второй мировой войне. Дымовые снаряды не являются отравляющими.

ШРАПНЕЛЬ

Уже давно - еще в XVI веке - задумывались артиллеристы над таким вопросом:

Какой смысл поражать неприятельского солдата большим, тяжелым ядром, когда довольно и маленькой пули, чтобы вывести человека из строя?

И вот в тех случаях, когда нужно было не разрушать стены, а наносить поражение неприятельской пехоте, артиллеристы стали заряжать орудия не ядрами, а большим количеством мелких камней.

Но заряжать орудие кучей камней неудобно: камни дробятся в стволе; в полете они быстро теряют скорость. Поэтому вскоре же - в начале XVII века - стали заменять камни шаровыми металлическими пулями.

Чтобы удобнее было заряжать орудие большим количеством пуль, их заранее укладывали в продолговатые мешочки, а впоследствии начали применять для этой цели круглые (цилиндрической формы) коробки.

Такой снаряд получил название картечи. Оболочка картечи разламывается в момент выстрела. Широким снопом вылетают из орудия пули. Они хорошо поражают живые цели - наступающую пехоту или конницу, буквально сметают ее с лица земли.

Картечь дожила до наших дней: она применяется при стрельбе из малокалиберных орудий для отражения атаки противника, для самообороны (рис. 117).

Но у картечи есть существенный недостаток: шаровые пули ее быстро теряют скорость, и поэтому картечь действует только на 150–500 метров от орудия (в зависимости от калибра пуль и силы заряда).

Поэтому с давних пор - уже в XVII веке - артиллеристы стали наполнять гранату пулями и порохом и таким способом посылать пули дальше 500 метров. Такой снаряд - картечная граната - описан впервые русским артиллеристом Онисимом Михайловым в его книге «Устав ратных, пушечных и других дел, касаюшихся до воинской науки», изданной в 1621 году. Это не помешало англичанам приписать изобретение картечной гранаты английскому капитану Шрапнелю, который якобы изобрел этот снаряд в 1803 году. От англичан это название перешло и в другие страны. И до сих пор снаряд, наполненный пулями, называют шрапнелью, хотя снаряд был изобретен в России за полтора века до появления на свет английского капитана Шрапнеля.

Картечная граната разрывалась, как всякая граната, и осыпала неприятеля, кроме осколков, еще и пулями. {163}


В очко этого снаряда, как и в гранату, вставляли деревянную трубку с пороховым составом.

Если при стрельбе оказывалось, что трубка горит слишком долго, для следующих выстрелов часть ее отрезали. И вскоре заметили, что лучше всего снаряд поражает, когда он разрывается еще в полете, в воздухе, и осыпает людей пулями сверху.

Но в шаровом снаряде помещалось мало пуль, всего штук 40–50. Да из них еще добрая половина пропадала зря, улетая вверх (рис. 118). Эти пули, потеряв скорость, падали затем на землю, не причиняя противнику вреда.


несет в себе пули именно до того места, где ей «приказано» разорваться (рис. 119). Это как бы маленькое летящее орудие: оно производит выстрел тогда, когда это нужно стреляющему, и осыпает пулями цель.

В продолговатой шрапнели помещается гораздо больше пуль, чем в шаровой, например в 76-миллиметровой, - около 260 шаровых пуль из сплава свинца и сурьмы.

Густой сноп этих пуль при удачном разрыве осыпает площадь около 150–200 метров в глубину и 20–30 метров в ширину - почти треть гектара.

Это значит, что пули одной удачно разорвавшейся шрапнели покроют в глубину участок большой дороги, по которой идет в колоние {165} целая рота - 150–200 человек. В ширину же пули покроют всю дорогу с ее обочинами.

Механизм, позволяющий управлять шрапнелью,- это ее дистанционная трубка, которую изобрел русский конструктор инженер С.К.Комаров. Об устройстве и действии трубки вы прочтете дальше.

Действие шрапнели подробно исследовал и описал известный русский ученый-артиллерист В. М. Трофимов.

Однако шрапнель - уже снаряд прошлого: во вторую мировую войну ее почти не применяли, и вот почему. Все офицеры и солдаты снабжены теперь стальными шлемами. Круглая пуля шрапнели обычно не пробивает этого шлема. В окопе или за деревом нетрудно укрыться от шрапнельных пуль (рис. 120). И получается, что сильные стороны


шрапнели почти не используются в современном бою. А изготовление шрапнели сложно, стоимость ее велика, на нее идет большое количество дефицитных металлов - свинца, сурьмы. К тому же, моральное воздействие шрапнели на противника невелико, разрыв ее сравнительно негромкий; при падении на землю шрапнель почти не наносит противнику поражения.

В наше время применяются близкие «родственники» шрапнели: зажигательные и осветительные снаряды. Их роднит то, что они разрываются в воздухе через столько времени после выстрела, сколько нужно стреляющему, с точностью до десятой доли секунды, да и принцип устройства и действия всех этих снарядов, можно считать, один и тот же. {166}


ЗАЖИГАТЕЛЬНЫЙ СНАРЯД

Уже несколько часов тянулся горячий бой. От частых разрывов наших снарядов густой черный дым стоял сплошной стеной над деревней, занятой гитлеровцами. И огороды, и улица покинутой населением деревни были изрыты воронками от разрывов гранат. Многие дома были разрушены. Но в оставшихся все еще упорно держался вражеский гарнизон. И как только наша артиллерия переносила свой огонь в глубину деревни, освобождая путь своей пехоте, тотчас снова начинали трещать уцелевшие вражеские пулеметы.

Но вот над деревней появились в воздухе плотные клубки красноватого дыма, и крыши деревенских домов начали вдруг дымиться. А еще через несколько минут ярко пылала почти вся деревня, словно огромный костер.

Согнутые фигуры гитлеровцев показались на деревенской улице и на огородах: они бежали, покидая деревню, чтобы не сгореть заживо в пылающих домах.

Ура! - пронеслось по нашей пехотной цепи, и она пошла в атаку. Вражеские пулеметы молчали.

{167}

Дело в том, что наша батарея стреляла не шрапнелью, а специальными зажигательными снарядами.

По устройству зажигательный снаряд похож на шрапнель: у него такой же корпус, такая же дистанционная трубка, перегородка и вышибной заряд. Но вместо пуль в нем расположены зажигательные элементы - открытые сверху железные коробочки с термитным и воспламенительным составом (рис. 121).

Термит - это смесь порошкообразного алюминия и железной окалины. Загораясь, термит дает очень высокую температуру - около 3000 градусов.

Вот как действует зажигательный снаряд. Быстро горящий пороховой шнур - стопин - передает огонь от дистанционной трубки зажигательным элементам и вышибному заряду (дымный порох). Происходит взрыв. Зажигательные элементы вылетают из стакана подобно шрапнельным пулям. Попадая в деревянные стены или крыши зданий, элементы углубляются в них примерно на 10 сантиметров и вызывают пожар. {168}

ОСВЕТИТЕЛЬНЫЙ СНАРЯД

Устройство осветительного снаряда также напоминает устройство шрапнели (рис. 122).

В стакан, подобный шрапнельному, помещают вместо пуль цилиндр с осветительным составом - так называемую осветительную звездку, привязанную тонкими стальными тросиками к шелковому парашюту.

Стопин передает огонь от дистанционной трубки небольшому вышибному заряду, который выталкивает парашют с осветительной звездкой и зажигает ее. Отличие от шрапнели или зажигательного снаряда заключается в том, что пули и зажигательные элементы вылетают из снаряда при его разрыве вперед, а парашют со звездкой вылетает назад. Это нужно для того, чтобы уменьшить скорость падения осветительной звездки до того, как раскроется парашют, и тем замедлить ее падение: ведь пули или зажигательные элементы летят вперед и вниз; звездка же вылетает через донную часть снаряда в направлении, противоположном направлению полета снаряда, то-есть назад и


{169}

вверх. А это позволяет звездке светить дольше. Чтобы выбросить звездку не вперед, а назад, приходится помещать вышибной заряд дымного пороха не на дне снаряда, а в его головной части, а дно привинчивать к корпусу на очень тонкой так называемой газовой резьбе. Чтобы при разрыве снаряда не был поврежден парашют, стальная перегородка - диафрагма - опирается на два разрезных полуцилиндра, и уже эти полуцилиндры, упираясь в дно снаряда, выталкивают его, как только взорвется порох вышибного заряда (см. рис. 122). Медленно опускаясь на парашюте, звездка хорошо освещает участок местности диаметром до километра примерно в течение целой минуты.

БРИЗАНТНАЯ ГРАНАТА

В наши дни для действия по пехоте, находящейся в окопах, применяют бризантную гранату. Так называют гранату, которая по желанию стреляющего может разорваться в воздухе. От обыкновенной гранаты она отличается только тем, что вместо взрывателя ударного действия в нее
ввернут так называемый дистанционный взрыватель, который позволяет разорвать гранату, подобно шрапнели, в любой точке ее полета.

Осколки гранаты, разорвавшейся в воздухе, достанут даже и того неприятельского солдата, который укрыт в окопе (рис. 123). В этом основное преимущество бризантной гранаты перед шрапнелью. Как она точками действует, вы поймете, взглянув на рис. 124.

КАК СНАРЯД ОТСЧИТЫВАЕТ СЕКУНДЫ

Механизм, который позволяет так управлять снарядом, чтобы он разорвался в воздухе на таком расстоянии, как это нужно стреляющему, называется дистанционной трубкой (рис. 125) или дистанционным взрывателем (рис. 126). Дистанционную трубку применяют к шрапнели, осветительному и зажигательному снарядам, а дистанционный взрыватель - к бризантной гранате.

В дистанционной трубке есть приспособление, похожее на то, которое вы уже видели в ударном взрывателе, а именно, ударник с капсюлем и жало. Но тут они как бы поменялись местами: ударник находится не позади, а впереди жала; чтобы наткнуться на жало, капсюлю надо {170}


{171}

двинуться вместе с ударником уже не вперед, а назад. Такое движение ударника назад и происходит в момент выстрела. Ударник - тяжелый металлический стаканчик; при выстреле, когда снаряд резко сдвигается вперед, ударник по инерции стремится остаться на месте, оседает, а капсюль, прикрепленный к дну ударника, накалывается на жало.

Воспламенение капсюля в дистанционной трубке происходит, следовательно, очень рано - еще до вылета снаряда из орудия.

Но луч огня не сразу передается вышибному заряду, он только зажигает специальный пороховой состав, запрессованный в кольцевом желобке верхней дистанционной части трубки (то-есть в ее верхнем кольце) (рис. 127).


Пробежав по этому желобку, пламя добирается до пороха в таком же желобке среднего, а потом и нижнего дистанционного кольца. Оттуда через запальное отверстие и передаточный канал пламя попадает в петарду (или пороховую камору). Взрыв в петарде вышибает латунный кружок, которым закрыто дно трубки, и огонь передается дальше, в центральную трубку снаряда, наполненную пороховыми цилиндриками. Быстро пробежав по ней, огонь поджигает вышибной заряд, а в результате взрыва вышибного заряда происходит разрыв снаряда.

Как видите, пламени приходится проделать достаточно длинный путь, прежде чем оно вызовет, наконец, разрыв снаряда. Но это сделано намеренно: пока пламя передвигается по каналам и желобкам колец, снаряд достигает заранее намеченного стреляющим места.

Стоит нам только чуть удлинить путь пламени, и снаряд разорвется позже. Наоборот, если мы сократим путь пламени, сократим время горения, снаряд разорвется раньше.

Все это достигается соответствующим устройством дистанционной трубки.

Дистанционные кольца трубки поворачиваются при помощи особого ключа и устанавливаются на любое деление. {172}

Весь секрет заключается в том, что когда мы поворачиваем кольца, устанавливая их на то или другое деление, то этим самым мы передвигаем и сквозной канал нижнего кольца.

Для того чтобы понять, какое это имеет значение, нужно совершенно ясно представить себе путь пламени в дистанционной трубке (см. рис. 127).

Путь этот слагается из шести частей. Первая часть - пламя бежит по желобку верхнего кольца трубки. Вторая часть - пламя пробегает по короткому сквозному каналу из верхнего кольца в среднее. Третья часть - желобок среднего кольца; четвертая - сквозной канал из среднего кольца в нижнее; пятая - путь по желобку нижнего кольца и шестая - весь оставшийся путь до вьшибного заряда.


Из всех этих отрезков пути самые длинные по времени - верхний, средний и нижний кольцевые желобки. При установке на полное время горения трубки пламени нужно пробежать верхний желобок до самого конца, только тогда оно может спуститься через канал в средний желобок. И снова нужно пробежать весь средний, а потом и нижний желобок от начала и до конца, чтобы потом пуститься в дальнейший путь.

Но вот мы поворачиваем кольцо так, что сквозной канал соединяет теперь середины желобков. Это сразу сильно сократит путь пламени, - теперь ему не нужно уже пробегать по каждому желобку с начала до конца: достаточно пробежать половину верхнего, затем половину среднего и половину нижнего. Путь пламени по времени сократится вдвое.

Передвигая кольца, можно, следовательно, изменять и время горения трубки.

Можно не только установить трубку на то или иное время горения, но и получить, при желании, почти мгновенный разрыв снаряда. {173}


{174}

Если установить нижнее кольцо буквой «К» против риски на тарели, то сквозной канал соединит самое начало верхнего желобка с самым концом нижнего желобка, огонь быстро передастся из головки трубки, от капсюля, внутрь снаряда. Снаряд разорвется в 10–20 метрах от орудия и осыплет пулями площадь до 500 метров перед орудием (рис. 128).

Это так называемая установка «На картечь». Так устанавливают шрапнель, когда надо отразить атаку пехоты или кавалерии на орудия. Шрапнель действует при этом наподобие картечи.

Если же против риски поставить буквы «Уд» на нижнем кольце, огонь из верхнего кольца не передастся вовсе в нижнее: ему помешает перемычка, против которой придется сквозной канал нижнего кольца.

Дистанционная часть трубки в этом случае не может вызвать разрыв снаряда. Но у трубки есть еще и ударный механизм, подобный, механизму взрывателя (рис. 129).

Если разрыв снаряда не будет вызван дистанционным приспособлением, его вызовет другое приспособление - ударное: шрапнель разорвется, подобно гранате, при ударе о землю. Поэтому-то дистанционная трубка и называется трубкой двойного действия.

Приблизительно так же устроен и действует и дистанционный взрыватель. Его отличие от дистанционной трубки заключается главным образом в том, что он снабжен детонатором, который вызывает детонацию разрывного заряда гранаты.

Однако у «послушной», вообще говоря, дистанционной трубки бывают все же свои «капризы»: пороховой состав по-разному горит при разном атмосферном давлении, а на большой высоте, где давление совсем небольшое, он и вовсе не горит; кроме того, трубка очень чувствительна к сырости.

Для предохранения от сырости трубку покрывают колпаком, который снимают только перед самой стрельбой. Но не всегда это помогает: иной раз дистанционная трубка все же подводит.

Вот почему были созданы образцы дистанционной трубки, в которую для отсчета времени вставлен как бы часовой механизм, работающий с точностью до десятой доли секунды.

Стрельба снарядами с такими «секундомерами» выгодна тем, что работа часового механизма почти не зависит от атмосферных условий. На зато такие трубки-секундомеры очень трудно изготовлять, и стоят они очень дорого.

<< {175} >>

Унитарный боеприпас использовался авиационными пушками «B-20» и «ШВАК». Боеприпас комплектовался осколочно-фугасным, осколочно-зажигательным, осколочно-зажигательно-трассирующим, осколочно-фугасно-зажигательным, бронебойно-зажигательным и бронебойно-зажигательно-трасирующим снарядами. ТТХ боеприпаса: калибр – 20 мм; длина – 99 мм; масса выстрела – 325 г; масса снаряда – 173 г; масса ВВ – 2,8 — 6,7 г; начальная скорость – 750 — 815 м/с.

Выстрелы 23×115-mm

Унитарный боеприпас предназначался для авиационных пушек «НС-23» и «НР-23». Боеприпас выпускался с осколочно-зажигательными, осколочно-зажигательно-трассирующими, осколочно-фугасно-зажигательными, осколочно-фугасно-зажигательно-трассирующими, бронебойно-зажигательно-трассирующими и бронебойно-зажигательными снарядами. Боеприпас создан на основе крупнокалиберного патрона 14,5×114 мм путём увеличения шейки гильзы до 23 мм. ТТХ боеприпаса: калибр – 23 мм; длина – 199 мм; длина гильзы – 115 мм; масса – 311 г; масса снаряда – 200 г; масса заряда – 33 г; масса ВВ – 13-15 г; начальгная скорость снаряда – 700 м/с; бронепробиваемость на дистанции 200 м – 25 мм.

Унитарный боеприпас предназначался для авиационной пушки «ВЯ-23». Он выпускался с бронебойно-зажигательно-трассирующим, осколочно-зажигательным и осколочно-зажигательно-трассирующим снарядами. ТТХ боеприпаса: калибр – 23 мм; длина – 236 мм; длина гильзы – 152 мм; масса – 450 г; масса снаряда – 188 г; начальная скорость снаряда – 905 — 980 м/с.

Выстрелы 25×218 SR

Унитарнй боеприпас использовался 25-мм зенитными пушками «72-К» и спаренными установками «94-КМ». Боеприпас комплектовался осколочно-зажигательным, осколочно-зажигательно-трассирующим, бронебойно-трассирующим, зажигательно-трасирущим, снарядами. ТТХ боеприпаса: калибр – 25 мм; масса – 627 — 684 г; масса снаряда – 288 г; масса заряда – 100 г; масса ВВ – 13 г; начальная скорость снаряда – 910 м/с; бронепробиваемость под углом встречи 90° на дистанции 100 м – 42 мм; дальность стрельбы — 2,4 км, потолок стрельбы — 2 км.

Выстрелы 37×198

Унитарный боеприпас предназначался для авиационной пушке «НC-37. Он оснащался бронебойно-зажигательно-трассирующим, осколочно-зажигательно-трассирующим и подкалиберным снарядами. ТТХ боеприпаса: калибр – 37 мм; длина – 328 мм; длина гильзы – 198 мм; масса снаряда – 735 — 760 г; начальная скорость – 810 — 900 м/с; бронепробиваемость на дистанции 300 м – 50 — 110 мм.

Унитарный боеприпас предназначался для противотанковой пушки «К-1» обр.1930 г., а также танковой пушки «5-К». Боеприпас комплектовался бронебойным, осколочным снарядами и картечью. ТТХ боеприпаса: калибр – 37 мм; длина гильзы – 250 м; масса снаряда – 660 — 950 г; масса ВВ – 9 — 22 г; начальная скорость снаряда – 820 м/с; бронепробиваемость под углом встречи 90° на дистанции 300 м – 30 мм; дальность стрельбы – 5,7 км.

Унитарный боеприпас был скопирован со шведского «25-mm Bofors AA» и использовался зенитной пушкой «61-К» и авиадесантной пушкой обр. «ЧК-М1». Он оснащался калиберным, подкалиберным, осколочно-трассирующим, За годы войны только подкалиберных снарядов было выпущено более 100 тысяч. ТТХ боеприпаса: калибр – 37 мм; длина гильзы – 252 мм; масса снаряда – 620 — 770 г; масса заряда – 200 — 217 г; масса ВВ – 37 г; начальная скорость снаряда – 870 — 955 м/с; бронепробиваемость под углом встречи 90° на дистанции 300 м – 50 — 97 мм; дальность стрельбы – 1,5 — 9,5 км; потолок стрельбы – 3 км.

Патронташ для 37-мм мин миномета-лопаты

Боеприпас предназначался для 37-мм миномета-лопаты обр.1939 г. ТТХ мины: калибр – 39 мм; масса – 500 г; дальность стрельбы – 60 — 250 м.

Выстрелы 45×186

Унитарный боеприпас предназначался для авиационной автоматической пушки «НС-45». Он оснащался осколочно-трассирующим снарядом. ТТХ боеприпаса: калибр – 45 мм; длина – 328 мм; длина гильзы – 186 мм; масса выстрела – 1,9 кг; масса снаояда 1 кг; начальная скорость –780 — 850 м/с; бронепробиваемость – 58 мм.

Унитарный боеприпас предназначался для 45-мм противотанковой и танковой пушки обр. 1932/34/37/42/43 г. (19-К/20-К/53-К/М-42/80-К). Боеприпас оснащался калиберным, подкалиберным, бронебойно-зажигательным, осколочным, дымовым снарядами и картечью. ТТХ боеприпаса: калибр – 45 мм; длина – 550 мм; длина гильзы – 310 мм; масса снаряда – 0,9 — 2,2 кг; начальная скорость снаряда – 335 — 820 м/с; бронепробиваемость под углом 90° на дистанции 500 м — 43 — 112 мм; дальность стрельбы – 4,4 км.

Боеприпас предназначался для 50-мм ротных минометов обр.1938/40/41 гг. ТТХ мины: калибр – 50 мм; длина – 212 мм; масса – 850 — 922 г; масса ВВ – 90 г; масса вышибного заряда – 4 — 5 г; начальная скорость мсины – 96 м/с; дальность стрельбы – 100 — 800 м.

Унитарный боеприпас предназначался для противотанковой и танковой пушки «ЗИС-2». Для оснащения боеприпаса использовались калиберные, подкалиберные, осколочные, учебные снаряды и картечь. ТТХ боеприпаса: калибр – 57 мм; длина гильзы – 480 мм; масса снаряда – 1,8 — 3,7 кг; масса заряда – 1 — 1,5 кг; масса ВВ – 18 — 220 г; количество картечных пуль – 324 шт.; начальная скорость снаряда – 700 — 1270 м/с; бронепробиваемость под углом встречи 90° на дистанции 100 м – 112 — 190 мм; дальность стрельбы – 4 — 8,4 км.

Боеприпасы использовался 76-мм горной пушкой обр. 1909 г., штурмовым орудием М1910 и «коротким» орудием «М-1913». За годы войны было выпущено около 226 тысяч боеприпасов. ТТХ боеприпаса: калибр – 76,2 мм; длина гильзы – 191 мм; масса – 6,2 кг; начальная скорость снаряда – 387 м/с; дальность стрельбы – 8,6 км.

Боеприпас предназначался для 76-мм горной пушки обр.1938 г. Выстрелы комплектовались в унитарных патронах, причём некоторые гильзы имели съёмное дно, что позволяло вынимать лишние пучки пороха и стрелять уменьшенными зарядами. Боеприпас комплектовался осколочно-фугасными, зажигательными, бронебойными и дымовыми снарядами, а также шрапнелью. Заряд состоял из трех пучков весом в 200, 135 и 285 г. За годы войны было ищготовлено около 1 млн. боеприпасов. ТТХ боеприпаса: калибр – 76,2 мм; масса снаряда – 3,9 — 6,5 кг; масса гильзы – 1,4 кг; масса ВВ – 85 — 710 г; начальная скорость снаряда – 260 — 510 м/с; бронепробиваемость под углом встречи 60° на дистанции 250 м – 42 мм; дальность стрельбы – 3 — 10,7 км.

Унитарный боеприпас предназначался для 76-мм танковых пушек «Л-11», «Ф-34» и «ЗИС-5». Боеприпас мог быть с калиберными, подкалиберными бронебойными, осколочно-фугасными, шрапнельными и картечными снарядами. ТТХ боеприпаса: калибр – 76,2 мм; масса снаряда – 3 — 6,5 кг; масса ВВ – 85 — 710 г; начальная скорость снаряда – 655-950 м\с; бронепробиваемость подуглом встречи 90° на дистанции 100 мм – 90 — 102 мм; дальность стрельбы – 4 — 13,3 км.

Унитарные боеприпасы использовались полковой пушкой обр. 1927 г, дивизионными пушками обр.1902/30 гг., «Ф-22», «ЗИС-3». Боеприпас комплектовался калиберным, подкалиберным, кумулятивным; осколочно-фугасным, зажигательным, осколочно-химическим снарядами, картечью и шрапнеллю. ТТХ боеприпаса: калибр – 76,2 мм; длина гильзы – 385 мм; масса снаряда – 3 — 6,3 кг; масса ВВ – 85 — 710 г; количество шрапнельых пуль – 260 шт.; начальаня скорость снаряда – 355 — 950 м/с; бронепробиваемость под углом встречи 90° на дистанции 100 м – 77 — 119 мм; дальность стрельбы – 4 — 13,7 км.

Боеприпас предназначался для 76-мм зенитного орудия обр. 1931/38 гг. «3-К». Боеприпас комплектовался осколочным, бронебойно-трасирующим снарядами и шрапнелю. ТТХ боеприпаса: калибр – 76,2 мм; длина гильзы – 558 мм; масса – 11,3 — 11,7 кг; масса снаряда – 6,5 — 6,9 кг; масса ВВ – 119 — 458 г; начальная скорость снаряда — 815 м/с; бронепробиваемость на дистанции 500 м — 78 мм; дальность стрельбы – 4 — 14,6 км; потолок стрельбы – 9 км.

Унитраный боеприпас предназначался для 76,2-мм дивизионных пушек обр. 1939 г. (УСВ/ ЗИС-22-УСВ). Боеприпас комплектовался бронебойным, подкалиберным, осколочно-фугасным, дымовым снарядами и шрапнелью. ТТХ боеприпаса: калибр – 76,2 мм; масса снаряда – 3 — 7,1 кг; масса ВВ – 119 — 815 г; начальная скорость снаряда – 355 — 950 м/с; бронепробиваемость под углом встречи 60° на дистанции 100 м – 65 — 95 мм; дальность стрельбы – 4 — 13,2 км.

К батальонным 82-мм обр. 1936/37/41/43 гг. минометам выпускались следующие мины: осколочно-фугасные, осколочные шестипёрые и десятипёрые мины и дымовые шестипёрые мины, а также агитационные, осветительные и учебно-практические. ТТХ мины: калибр – 82 мм; общая длина – 295 мм; длина корпуса – 275 мм; масса мины — 3,3 — 4,6 кг; масса ВВ – 0,4 кг; дальность стрельбы – 0,1 — 3 км; радиус поражения – 60 м.

Унитарный боеприпас предназначался для 85-мм зенитных пушек обр.1939 г. «52-К», «90-К» и танковых пушек «Д-5», «Д-5С», «С-53», «ЗИС-С-53». Боеприпасы комплектовались осколочным и бронебойно-трассирующим снарядами. ТТХ боеприпаса: калибр – 85 мм; масса снаряда – 5-9,5 кг; начальная скорость снаряда – 800 — 1050 м/с; бронепробиваемость под углом встречи 90° на дистанции 100 м – 119 — 167 мм; дальность стрельбы – 15,7 км, потолок стрельбы – 10,2 км.

Унитарный боеприпас использовался полевой пушкой «БС-3», морским орудием «Б-24/34» и танковым орудием «Д-10». Он комплектовался бронебойно-трасирующим и осколочно-фугасным снарядами. ТТХ боеприпаса: калибр – 100 мм; масса – 27,1 — 30,1 кг; масса снаряда – 15,6 — 15,8 кг; масса ВВ – 65 г. — 1,5 кг; начальная скорость снаряда – 600 — 897 м/с; бронепробиваемость под углом встречи 90° на дистанции 500 м – 155 — 200 мм; дальность стрельбы – 20,6 км.

Унитарный боеприпас предназначался для морских орудий «100 mm/50 Minizini», приобретеных в Италии для легких крейсеров «Червона Украина» и «Красный Кавказ». ТТХ боеприпаса: калибр – 100 мм; длина выстрела – 1200 мм; длина снаряда 500 мм; масса выстрела – 24,6 — 28,2 кг; масса снаряда – 13,9 — 15,8 кг; масса заряда – 4,8 — 6,6 кг; масса ВВ – 1,3 — 1,9 кг; начальная скорость снаряда – 800 -880 м/с; дальность стрельбы – 19,6 км.

Унитарный боеприпас использовался 102-мм морской пушкой Обуховского завода «Б-2». Он комплектовался фугасным, ныряющим, осветительным снарядамим и шрапнелью. ТТХ боеприпаса: калибр – 101,6 мм; масса – 30 кг; масса снаряда – 17,5 кг; масса заряда – 7,5 — 5,2 кг; начальная скорость снаряда – 823 м/с; дальность стрельбы – 16,3 км.

Боеприпас раздельно-гильзового заряжания предназначался для 107-мм пушки обр. 1910/30 гг и 107-мм универсальной дивизионной пушки обр. 1940 г. «М-60». Он имел три метательных заряда — полный, первый и второй. Боеприпас оснащался калиберными, фугасными, осколочно-фугасными, дымовыми, зажигательными снарядами и шрапнелью. ТТХ боеприпаса: калибр – 106,7 мм; масса снаряда – 16,4 — 81,8 кг; масса ВВ – 2 кг; начальная скорость снаряда – 730 м/с; бронепробиваемость под углом 90° на дистанции 100 м – 137 мм; дальность стрельбы – 3 — 18,3 км.

Боеприпас предназначался для 107-мм полкового горно-вьючного миномёта обр. 1938 г. ТТХ боеприпаса: 106,7 мм; масса – 8 — 9,1 кг; масса ВВ – 1 кг; начальная скорость мины — 325 м/с; дальность стельбы – 0,7 — 6,3 км.

Мина предназначалась для 120-мм полковых минометов обр. 1938/43 г. Использовались следующие виды мин: осколочно-фугасные, дымовые, зажигательные, осветительные. Выстрел производился накалыванием капсюля под весом мины, или же с помощью спускового механизма при стрельбе мощными зарядами. Заряд размещался в xвостовике мины. Для увеличения дальности стрельбы существовали дополнительные заряды в матерчатых картузах, крепившиеся вручную на хвостовик. Осветительная мина оснащалась пиротехнической шашкой с парашютом и вышибным зарядом. ТТХ мины: калибр – 120 мм; масса – 16,8 — 17,2 кг; масса ВВ – 0,9 — 3,4 кг; начальная скорость мины – 272 м/с; дальность стрельбы – 0,5 — 5,9 км.

Боеприпас раздельно-гильзового заряжания предназначался для 122-мм копусной пушки обр. 1931/37 гг. «А-19», пушки для САУ «А-19С» и танковых пушек «Д-25» и «Д-25Т». Он также использовался гаубицами «M1909/37», «М1910/30», «М-30», «М-30С» и САУ «СУ-122» К нему полагалось четыре метательных заряда: полный, № 1, № 2 и № 3, размещавшихся в металлической гильзе. Для стрельбы использовались, как пушечные, так и гаубичные снаряды. Основными используемыми снарядами (зачастую и при стрельбе по танкам) были осколочно-фугасные. Бронебойные снаряды входили, главным образом, в боекомплекты самоходных орудий и пушек, используемых в береговой обороне, расчётам полевых орудий такие снаряды выдавались только при непосредственной угрозе атаки огневых позиций танками противника. Бетонобойные снаряды использовались для стрельбы по долговременным огневым точкам. ТТХ боеприпаса: калибр – 121,9 мм; длина гильзы – 785 мм; масса снаряда – 21,8 — 25 кг; масса полного заряда – 6,8 кг; масса ВВ – 156 г – 3,8 кг; бронепробиваемость под углом 90° на дистанции 100 м – 168 мм; начальная скорость снаряда –364 — 800 м/с; дальность стрельбы – 4 — 20,4 км.

Боеприпас использовался корабельными орудиями «Б-7» и «Б-13». Боеприпас комплектовался полубонебойным, фугасным, осколочно-фугасным, ныряющим и осветительным снарядами. ТТХ боеприпаса: калибр – 130 мм; длина снаряда – 512 — 653 мм; масса снаряда – 33,4 — 36,8 кг; масса ВВ – 1,7 — 3,7 кг; начальная скорость снаряда – 823 — 861 м/с; дальность стрельбы – 20 — 25 км.

Боеприпас раздельно-гильзового заряжания предназначался для 152-мм мортиры обр.1931 г.(NM). Орудие имело 5 зарядов, помещавшихся в специальной гильзе. Боеприпас комплектовался осколочно-фугасными осколочно-дымовыми и дымовыми снарядами. ТТХ боеприпаса: калибр – 152,4 мм; длина гильзы – 125 мм; масса снаряда – 38,3 — 41 кг; масса ВВ – 7 — 7,7 кг; начальная скорость снаряда – 250 м/с; дальность стрельбы – 5,2 км.

Боеприпас предназначался для 152-мм гаубиц обр. 1909/30 гг., 1910/37 гг., обр. 1938 г. (М-10), «Д-1» и гаубицы-пушки «МЛ-20». Для стрельбы из гаубицы предусматривалось 8 видов метательных зарядов. Боеприпас комплектовался кумулятиыным, полубронебойным, осколочным, осколочно-фугасным, фугасным, бетонобойным, осветительным, дымовым снарядами и шрапнелью. ТТХ боеприпаса: калибр – 152,4 мм; масса выстрела – 36 — 48 кг; масса снаряда – 27,7 — 44 кг; масса ВВ – 0,5 — 8,8 кг; начальная скорость снаряда – 398 — 560 м/с; бронепробиваемость под углом 90° — 250 мм брони, 1140 мм железобетона; дальность стрельбы –5 — 13,7 км.

Боеприпас предназначался для 152-мм пушек обр. 1910/30 гг., обр. 1910/34 гг. и обр. 1937 г. «МЛ-20/МЛ-20С/МЛ-20М». Боеприпас комплектовался калиберными, кумулятивными, бетонобойными, осколочно-фугасными, осветительные, химические снаряды и шрапнель. ТТХ боеприпаса: калибр – 152,4 мм; масса снаряда – 27,4 — 56 кг; масса ВВ — 660 г – 8,8 кг; начальная скорость снаряда – 600 — 680 м/с; бронепробиваемость под углом 90° на дистанции 500 м — 250 мм; дальность стрельбы – 3 — 18 км.

Боеприпас раздельно-картузного заряжания предназнаяался для 152-мм пушки обр. 1935 г. «Бр-2». Боеприпас комплектовался осколочно-фугасными, бетонобойными и химическими снарядами. Имелось три заряда – полный, №1 и №2. Всего было выпущено 39,4 тыс. боеприпасов. ТТХ боеприпаса: калибр – 152 мм; масса снаряда – 49 кг; масса ВВ – 6,5 — 7 кг; начальная скорость снаряда – 880 м/с; дальность стрельбы – 25 — 27 км.

Двенадцатиперная мина использовалась дивизионным казнозарядным 160-мм миномётом обр. 1943 г. (МТ-13). ТТХ мины: калибр – 160 мм; масса — 40,5 кг; масса ВВ – 7,8 кг; начальная скорость мины – 140 — 245 м/с; дальность стрельбы – 0,6 — 5,1 км.

Боеприпасы предназначались для корабельного орудия «Б-1-П». Боеприпас комплектовался бронебойными, фугасными, осколочно-фугасными и бетонобойными снарядами. ТТХ боеприпаса: калибр – 180 мм; масса снаряда – 97,5 кг; масса заряда – 18 — 37,5 кг; масса ВВ – 2 — 8 кг; начальная скорость снаряда – 600 — 920 м/с; дальность стрельбы – 18,6 — 37 км.

Боеприпас раздельного картузного заряжания предназначался для 203-мм гаубицы обр.1931 г. «Б-4». Он комплектовался десятью переменными зарядами. Боепрпас оснащался фугасным и бетонобойным снарядами. Всего за годы войны было выстрелено не менее 659 тысяч снарядов. ТТХ боеприпаса: калибр – 203,4 мм; масса снаряда – 100-146 кг; масса полного заряда – 15 кг; начальная скорость снаряда – 481 — 607 м/с; дальность стрельбы – 17,9 км; бронеррообиваемость – до 1 м железобетона.

Боеприпас исползовался 210-мм пушкой обр.1939 г. «Бр-17». ТТХ боеприпаса: калибр – 210 мм; масса снаряда – 135 кг; начальная скорость снаряда – 800 м/с; дальность стрельбы — 30,4 км.

Боеприпас раздельного картузного заряжания предназначался для 280-мм мортиры обр. 1939 г. «Бр-5». Боеприпас комплектовался фугасными и бетонобойными снарядами. Для ведения огня использовалось 6 зарядов. Всего было выпущено 14 тыс. снарядов. ТТХ боеприпаса: калибр – 279,4 мм; масса снаряда – 204 — 286 кг; масса ВВ – 33,6-58,7 кг; начальная скорость снаряда – 290 — 420 м/с; бронепробиваемость – 2 м. железобетона; дальность стрельбы – 7,3 — 10,4 км.

Боеприпас картузного заряжания предназначался для 356-мм железнодорожной артиллерийской установки «ТМ-1-14». ТТХ боеприпаса: калибр – 355,6 мм; масса снаряда – 512,5 — 747 кг; масса заряда – 213 кг; начальная скорость снаряда – 732 — 823 м/с; дальность стрельбы – 31 — 51 км.

Боеприпас картузного заряжания предназначался для морской 406-мм пушки «Б-37». Боеприпас комплектовался бронебойными, полубронебойными и фугасными снарядами. Всего было выпущено около 300 боеприпасов. ТТХ боеприпаса: калибр – 406,4 мм; длина снаряда – 1908 — 2032 мм; масса снаряда – 1108 кг; масса заряда – 299,5 — 320 кг; масса ВВ – 25,7-88 кг; начальная скорость снаряда – 830 — 870 м/с; бронепробиваемость под углом 25° на дистанции 5,5 км – 406 мм; дальность стрельбы – 45,7 — 49,8 км.

Боеприпас раздельного картузного заряжания предназначался для гаубицы обр. 1939 г. «Бр 18». Применялись заряды, как советского, так и чехословацкого производства. Основные снаряды – фугасный и бетонобойный. ТТХ боеприпаса: калибр – 305 мм; масса снаряда – 330 — 470 кг; масса заряда – 157 кг; длина снаряда – 1,3 м; начальная скорость – 410 — 853 м/с; бронепробиваемость — 2 м. кирпичной стены или железобетона; дальность стрельбы – 16 — 29 км.

I I - период до 1941 г.

В декабре 1917 г. Совет народных комиссаров объявил о демобилизации военных заводов, но к этому времени выпуск боеприпасов в стране практически прекратился. К 1918 г. все основные запасы оружия и боеприпасов, оставшихся от мировой войны, были уже исчерпаны. Однако к началу 1919 г. работоспособным остался только Тульский патронный завод. Луганский патронный в 1918 г. был первоначально захвачен немцами, затем был занят белогвардейской армией Краснова.

Для вновь создавшегося завода в Таганроге белогвардейцы взяли с Луганского завода по 4 станка с каждой разработки, 500 пудов пороха, цветные металлы, а также часть готовых патронов.
Так атаман Краснов возобновил производство на РУССКО - БАЛТИЙСКОМ заводе Рус.-Балт. акц. об-ва судостроительных и механических заводов.(Основан в 1913 году в Ревеле, в 1915 году эвакуирован в Таганрог, в советское время Таганрогский комбайновый завод.) и уже к ноябрю 1918 года производительность этого завода возросла до 300000 ружейных патронов в сутки (Какурин Н. Е. "Как сражалась революция")

«3 января (1919 г) союзники видели уже оживший и пущенный в ход Русско-Балтийский завод в Таганроге, где при них выделывали гильзы, отливали пули, вставляли их в мельхиоровую оболочку, насыпали порохом патроны - словом, завод уже был в полном ходу. (Пётр Николаевич Краснов «Всевеликое Войско Донское») В Краснодарском крае и на Урале находят гильзы с маркировкой Д.З.
Вероятнее всего эта маркировка и обозначает «Донской Завод» г. Таганрога

Строящийся Симбирский находился под угрозой захвата. Весной 1918г. началась эвакуация Петербургского патронного завода в Симбирск. Для налаживания производства патронов в Симбирск в июле 1919 г. прибыло около 1500 рабочих из Петрограда.
В 1919 г. завод начинает выпуск продукции, а с 1922 г. Ульяновский завод переименовывается в «Завод имени Володарского».

Кроме того, советское правительство строит в Подольске новый патронный завод. Под него отвели часть снарядного завода, расположенного в помещениях бывшего завода "Зингер". Туда были отправлены остатки оборудования из Петрограда. С осени 1919 г. Подольский завод стал производить переделку иностранных патронов, а в ноябре 1920 г. была выпущена первая партия винтовочных патронов.

С 1924 производством патронов занимается Государственное объединение "Главное управление военной промышленности СССР”, в составе которого работают Тульский, Луганский, Подольский, Ульяновский заводы.

С 1928 г. патронные заводы, кроме Тульского, получили номера: Ульяновский - 3, Подольский - 17, Луганский - 60. (Но Ульяновский сохранил свою маркировку ЗВ до 1941 г.)
С 1934 г. южнее Подольска были построены новые цеха. Вскоре их стали называть Новоподольским заводом, а с 1940 Климовским заводом № 188.
В 1939 патронные заводы переподчинили 3-ему ГУ Наркомата вооружений. В него вошли следующие заводы: Ульяновский № 3,Подольский № 17, Тульский № 38 , Опытный патр. завод (Марьина. роща г. Москва) № 44, Кунцевский (Красный снаряжатель) № 46, Луганский № 60 и Климовский № 188.

Маркировка патронов советского производства остается в основном с выступающим оттиском.

В верхней части - № или наименование завода, внизу – год изготовления .

У патронов Тульского завода в 1919-20 г.г. указывается квартал, возможно в 1923-24 г.г. указывается только последняя цифра года выпуска, а Луганский завод в 1920-1927 гг. указывает период (1,2,3) в котором они изготовлялись. Ульяновский завод в 1919 -30 г. г. ставит наименование завода (С, У, ЗВ) внизу.

В 1930 г. сферическая донная часть гильзы заменяется на плоскую с фаской. Замена вызвана проблемами, возникавшими при стрельбе из пулемета «Максим». Выступающая маркировка располагается по краю дна гильзы. И только в 1970-е годы гильзы стали маркировать выдавленным оттиском по плоской поверхности ближе к центру.

Маркировка

Начало маркировки

Конец маркировки

Климовский завод

Кунцевский завод
«Красный снаряжатель»
Москва

Производил патроны для ШКАС и со специальными пулями Т-46,ЗБ-46
По-видимому, опытные партии

*Примечание. Таблица не полная, могут быть и другие варианты

Очень редко встречаются гильзы Луганского завода с дополнительными обозначениями +. Вероятнее всего, что это технологические обозначения и патроны предназначались только для испытательных стрельб.

Существует мнение, что в 1928-1936 году Пензенский завод выпускал патроны с маркировкой № 50 но, более вероятно, что это нечеткое клеймо № 60

Возможно, в конце тридцатых годов производился выпуск патронов или гильз на Московском «Дроболитейном заводе» № 58 ,затем выпускавшем хвостовые патроны минометных мин.

В 1940-41 г в Новосибирске комбинат № 179 НКБ (Наркомат боеприпасов) производил винтовочные патроны.

Гильза для пулемета ШКАС, в отличие от обыкновенной винтовочной гильзы, имеет кроме номера завода и года изготовления дополнительное клеймо -- букву "Ш".
Патроны с гильзой ШКАС, имеющие красную окраску капсюля применялись для стрельбы только из синхронных авиапулемётов.

Р. Чумак К. Соловьев Патроны для сверхпулемета Журнал «Калашников» № 1 2001 г.

Примечания:
Финляндия, использовавшая винтовку Мосина, производила, а также закупала в США и других странах, патроны 7.62х54,которые встречаются на местах боев Советско-Финской войны 1939 г. и ВОВ. Вероятно, использовались и патроны дореволюционного Российского производства.

Suomen AmpumaTarvetehdas OY (SAT) , Riihimaki, Finland(1922-26)

США в 1920- 30 годы использовали винтовки Мосина, оставшиеся от Русского заказа для тренировочных целей и продавали их в частное пользование, выпуская для этого патроны. Производились поставки в Финляндию в 1940 году

(UMC- Union Metallic Cartridge Co.присоединенная к Remington Co.)

Winchester Repeating Arms Co., Bridgeport, CT
Средний рисунок – завод East Alton
Правый рисунок – завод New Haven

Германия в годы 1 мировой войны использовала трофейную винтовку Мосина для вооружения вспомогательных и тыловых частей.

Возможно что, первоначально, немецкие патроны выпускались без маркировки, но достоверной информации об этом уже наверно не будет

Deutsche Waffen-u. Munitionsfabriken A.-G., Fruher Lorenz , Karlsruhe, Germany

Испания в период гражданской войны получила большое кол-во разнообразного, в основном устаревшего, оружия из СССР. В том числе и винтовку Мосина. Было налажено производство патронов.Возможно,что вначале использовались гильзы советского производства, которые переснаряжались и на них наносилась новая маркировка.

Fabrica Nacional de Toledo. Испания

Английская фирма Kynoch поставляла патроны в Финляндию и Эстонию. По данным, которые предоставил GOST из « P. Labbett & F. A. Brown. Foreign rifle- calibre ammunition manufactured in Britain.London, 1994.,» компанией Kynoch были заключены контракты на поставку патронов 7,62х54:

1929 Эстония (с трассирующей пулей)
1932 Эстония (с тяжелой пулей массой 12,12гр.)
1938 Эстония (с трассирующей пулей)
1929 Финляндия (с трассирующей пулей, бронебойной пулей)
1939 Финляндия (с трассирующей пулей)

Производился патрон 7,62х54 в 20-40 годы и в других странах в коммерческих целях:

ARS – мало вероятно, что это A . RS Atelier de Constuction de Rennes , Rennes , Франция, так как на патронах этой фирмы стоит RS , вероятнее снаряжено в Эстонии с участием Финляндии

FNC- (Fabrica Nacional de Cartuchos, Santa Fe), Мексика

FN-(Fabrique Nationale d"Armes de Guerre , Herstal) Бельгия ,

Pumitra Voina Anonima, Румыния
Вероятно для оставшихся трофейных винтовок после 1 мировой войны,но точных данных о производителе нет

Возможно, что некоторые из перечисленных выше зарубежных боеприпасов могли попасть на советские склады в небольшом количестве в результате присоединения западных территорий и Финской войны, и использовались, вероятнее всего, частями «народного ополчения», в начальный период ВОВ. Также сейчас нередко встречаются при археологических исследованиях мест боев ВОВ на советских позициях гильзы и патроны производства США и Англии по заказу России на 1 мировую войну. Заказ не был выполнен полностью в срок, и уже в годы гражданской войны поставлялся Белой армии. После окончания гражданской войны остатки этих боеприпасов осели на складах, наверняка использовались подразделениям охраны и ОСОАВИАХИМа, но оказались востребованными с началом ВОВ.
Иногда встречаются на местах боев гильзы 7,7мм английского винтовочного патрона (.303 British).,которые принимают за боеприпасы 7,62х54R.Эти патроны использовались, в частности, армиями прибалтийских государств и в 1940 были использованы для Красной армии. Под Ленинградом встречаются такие патроны с маркировкой V- Рижского завода «Вайрогс»(VAIROGS,быв. Sellier & Bellot)
.
Позже такие патроны английского и канадского производства поступали по ленд-лизу.

I I I - период 1942-1945 г.г.

В 1941 все заводы, кроме Ульяновского, были частично или полностью эвакуированы, причем старые номера заводов были сохранены на новом месте. Например Барнаульский завод, перевезенный из Подольска, выдал первую продукцию 24 ноября 1941. Некоторые заводы были вновь созданы. Приведена нумерация всех патронных производств , так как нет точных данных по ассортименту выпускаемой ими продукции.

Маркировка с
1941-42 г.

Расположение завода

Маркировка с
1941-42 г.

Расположение завода

Новая Ляля

Свердловск

Челябинск

Новосибирск

По данным Б. Давыдова в годы войны винтовочные патроны выпускались на заводах 17 ,38 (1943), 44 (1941-42),46 ,60 ,179 (1940-41),188 ,304 (1942),529 ,539 (1942-43),540 ,541 (1942-43), 543 ,544 ,545 ,710 (1942-43),711 (1942).

При восстановлении в 1942-1944 годах заводы получили новые обозначения.

Данное клеймо, вероятно, продукция, выпущенная Подольским заводом в период возобновления его работы.
Могут быть и другие обозначения. Например, № 10 в 1944 (встречается на патронах ТТ), но месторасположение производства неизвестно, возможно, это Пермский завод или плохочитаемое клеймо Подольского завода.

С 1944 возможно обозначение месяца выпуска патрона.
Например, такую маркировку имеет учебный патрон 1946 года.

IV - Послевоенный период

В послевоенные годы в СССР в патронном производстве остались заводы в Климовске-№711, Туле-№539, Ворошиловграде(Луганск)-№270, Ульяновске-№3, Юрюзани-№38, Новосибирске-№188, Барнауле-№17 и Фрунзе-№60.

Маркировка винтовочных патронов этого периода производства остается в основном с выступающим оттиском. В верхней части - № завода, внизу – год изготовления.

В 1952-1956 г. для обозначения года выпуска применяются следующие обозначения:

Г = 1952, Д = 1953, E = 1954, И = 1955, K = 1956 .

После ВОВ патрон калибра 7.62 производился также в странах Варшавского договора, Китае, Ираке и Египте, и других странах.. Возможны варианты обозначений

Чехословакия

aym bxn zv

Болгария

Венгрия

Польша

Югославия

П П У

31 51 61 71 321 671(обычно код ставится вверху, но код 31 может находиться и снизу)

Данный патрон выпускается и сейчас на Российских заводах в боевом и охотничьем исполнении.

Современные названия и некоторые из вариантов коммерческих маркировок на Российских патронах с 1990 г

Конструкции, характеристики различных пуль для патронов калибра 7,62 достаточно хорошо представлены в современной литературе по оружию и поэтому приводятся только цветовые обозначения пуль по данным « Справочника по патронам…» 1946г.

Легкая пуля Л обр.1908 г.

Тяжелая пуля Д обр.1930 г. вершинка окрашена на длину 5 мм в желтый цвет
С 1953 заменена на пулю ЛПС окрашиваемую по вершинке до 1978 в серебристый цвет

Бронебойная пуля Б-30 обр. 1930г.
вершинка окрашена на длину 5 мм в черный цвет

Бронебойно-зажигательная пуля Б-32 обр. 1932 г. вершинка окрашена на длину 5 мм в черный цвет с красной окаймляющей полосой
Пуля БС-40 обр. 1940г. окрашивалась на длину 5 мм в черный цвет, а остальная выступающая из гильзы часть пули в красный цвет.

Пристрелочно-зажигательная пуля ПЗ обр.1935г. вершинка окрашена на длину 5 мм в красный цвет

Трассирующая пуля Т-30 обр. 1930г. и Т-46 обр. 1938г. вершинка окрашена на длину 5 мм в зеленый цвет.
Пуля Т-46 разрабатывалась на Кунцевском заводе (Красный снаряжатель) № 46 и отсюда получила свой номер в названии.

Большинство приведенной выше информации предоставлено директором историко-краеведческого музея Ломоносовского района Ленинградской области
Владимиром Андреевичем Головатюком , много лет занимающимся историей стрелкового оружия, боеприпасов.
В музее собрано немало материалов и экспонатов по истории района, боевым действиям на территории района в годы ВОВ. Регулярно проводятся экскурсии для школьников и всех желающих. Т елефон музея 8 812 423 05 66

В дополнение привожу имеющуюся у меня информацию по винтовочным патронам более раннего периода:
Патрон к винтовке Крнка, Баранова
Выпускался на Петербургском заводе (и некоторыми мастерскими без обозначений)

Вероятно Л- наименование Литейной мастерской СПб.

Вероятно ВГО - Василеостровский гильзовый отдел патронного завода СПб.

Появляется обозначение трети года выпуска

Петербургский завод

К сожалению у меня нет информации по обозначениям до 1880 года, вероятнее всего буква В обозначает Василеостровский гильзовый отдел патронного завода СПб., а верхний знак- наименование изготовителя латуни.

Производство Keller & Co., Hirtenberg Австрия, вероятно по заказу Болгарии на сербско–болгарскую войну.

Миномёты как средство «окопной войны» появились ещё во время Первой мировой войны. Основные черты современного миномета сформировались, когда был создан первый образец такого конструкции Стокса. На первый взгляд это достаточно примитивное оружие, представляющее собой трубу-ствол на простейшем двуногом лафете, опирающемся на плоскую плиту, гасящую силу отдачи в грунт.

3-дюймовый миномёт конструкции капитана Стокса по схеме «мнимого треугольника», которая стала классической, был создан в 1915 году и предназначался первоначально для стрельбы неоперёнными химическими минами.


Химическая миномётная неоперённая мина

При попадании в цель такая мина разлеталась на части, разбрасывая отравляющие вещества. Впоследствии были созданы миномётные мины, начинённые взрывчаткой, обтекаемой формы, снабженные хвостовым оперением.

Фактически калибр «трёхдюймовых мин» равнялся 81 мм, так как диаметр крышек в передней и задней части цилиндра составляет 81 мм. К донной части мины прикреплялась полая трубка меньшего, чем мина, диаметра - патронник с огнепередающими отверстиями. В трубку вставлялся холостой ружейный патрон 12 калибра в картонной гильзе. Сверху на патронник налагались дополнительные пороховые заряды кольцеобразной формы. Дальность стрельбы зависела от количества колец, хотя при стрельбе на минимальную дистанцию мина могла быть использована и без них.

Заряжание миной производилось с дула. Мина имела меньший диаметр, чем калибр ствола и свободно падала на дно канала под действием силы тяжести. Мина натыкалась на боек ударника, при этом срабатывал капсюль-воспламенитель охотничьего патрона, вставленного в патронник. Воспламенившийся порох, сгорая, развивал давление, достаточное для того, чтобы пороховые газы пробили оболочку патрона напротив огнепередающих отверстий. При этом воспламенялись дополнительные заряды. Под давлением пороховых газов мина выбрасывалась из ствола.

Благодаря простоте заряжания была достигнута огромная по тем времена скорострельность (25 выстрелов в минуту), какой не имел ни один миномет или полевое орудие. Точность стрельбы, особенно неоперёнными химическими минами, была посредственной, что компенсировалось высокой скорострельностью.

В 20-30 годы миномёт был существенно усовершенствован во Франции специалистами фирмы «Брандт». Миномёт стал легче, обслуживание и стрельба из него существенно упростились. Наведение по углу места в небольшом секторе осуществлялось с помощью винтового поворотного механизма, размещенного на креплении прицела. Были разработаны новые, более тяжелые, мины обтекаемой формы, в которых увеличилась не только масса заряда, но и дальность полета.

81-мм миномет «Брандт» модели 27/31 получил широкое распространение и стал образцом для подражания. Минометы этого типа выпускались по лицензии или просто копировались, в том числе в СССР.

Перед войной в СССР произошло чрезмерное увлечение миномётами. Военное руководство считало, что лёгкие, недорогие простые в производстве и обслуживании миномёты способны заменить собой другие типы артиллерийского вооружения.

Так, под давлением «миномётного лобби» были похоронены проекты лёгких пехотных гаубиц, не принят на вооружение хорошо показавший себя на испытаниях автоматический гранатомет Таубина.

В конце 1939 года был создан простейший тип миномета - 37-мм миномет-лопата минимального калибра. Им планировалось заменить пехотный винтовочный гранатомет Дьяконова.

В походном положении миномет массой около 1,5 кг представлял собой лопату, рукоятью которой служил ствол. Миномет-лопата мог использоваться для рытья окопов. При стрельбе из миномета лопата выполняла роль опорной плиты. Лопата была сделана из броневой стали.

Миномет состоял из ствола, лопаты - опорной плиты и сошки с пробкой. Труба ствола соединена наглухо с казенником. В казенник запрессован боек, на который накладывался капсюль вышибного патрона мины. Хвостовая часть казенника оканчивалась шаровой пятой, служащей для шарнирного соединения ствола с плитой (лопатой). Ствол и лопата в шарнирном соединении сделаны неразъемными. Для соединения ствола с лопатой по-походному на казенной части ствола имелось вращающееся кольцо. Сошка служила для опоры ствола и в походном положении помещалась в стволе. Ствол при этом с дула закрывался пробкой. Перед стрельбой сошка соединялась со стволом. Скорострельность миномёта достигала 30 выстр./мин.

Какие-либо прицельные приспособления у миномета отсутствовали, стрельба велась на глаз. Для стрельбы была разработана 37-мм осколочная мина массой около 500 граммов. Мины носились в патронташе.

Зимой 1940 года при использовании 37-мм миномета-лопаты в боях в Финляндии была внезапно обнаружена его крайне низкая эффективность. Дальность полета мины при оптимальном угле возвышения была невелика и не превышала 250 метров, а осколочное действие было слабым, особенно в зимнее время, когда почти все осколки застревали в снегу. Ввиду отсутствия прицельных приспособлений точность стрельбы была крайне низкой, возможен был только «беспокоящий» обстрел противника. Всё это стало причинами негативного отношения к 37-мм миномету в пехотных подразделениях.


37-мм миномётная мина

В конце 1941 года из-за неудовлетворительной боевой эффективности 37-мм миномёт был снят с производства. Тем не менее, его можно было встретить на передовой до 1943 года. По воспоминаниям фронтовиков, его относительно успешно применяли в условиях стабильной линии фронта после пристрелки ориентиров.

В 1938 году на вооружение был принят 50-мм ротный миномёт разработки КБ завода №7. Он представлял собою жёсткую систему со схемой мнимого треугольника. Миномёт имел механический прицел без оптики.

Конструктивной особенностью миномёта было то, что стрельба производилась лишь при двух углах возвышения: 45° или 75°. Регулировка по дальности производилась так называемым дистанционным краном, находящемся в казенной части ствола и выпускающим часть газов наружу, тем самым уменьшая давление в стволе.

Угол возвышения 45° обеспечивал наибольшую дальность огня 850-граммовой миной до 800 м, а при полностью открытом дистанционном кране угол наклона ствола в 75° обеспечивал минимальную дальность в 200 м. При стрельбе на все дальности применялся только один заряд. Дополнительное изменение дальности стрельбы также осуществлялось за счёт изменения пути мины в стволе по отношению к основанию ствола путём передвижения бойка, в результате чего менялся объём каморы. Угол горизонтального наведения без перестановки плиты до 16°. Скорострельность 30 выстр./мин. Весил миномёт около 12 кг.

В процессе эксплуатации в частях и в ходе боевого применения во время конфликта с Финляндией был выявлен целый перечень недостатков ротного миномёта. Самыми существенными из них были:

Большая минимальная дальность (200 м).
- Относительно большой вес.
- Большие габариты, что затрудняло маскировку.
- Слишком сложное устройство дистанционного крана.
- Несоответствие шкалы дистанционного крана дальности.
- Неудачное расположение выходного отверстия в дистанционном кране, из-за этого при стрельбе выходящие газы, ударяясь о грунт, поднимали пыль и тем затрудняли работу расчета.
- Ненадёжное и сложное крепление прицела.


50-мм миномётная мина

В 1940 году на вооружение поступил модернизированный 50-мм ротный миномёт. В 50-мм ротном миномёте обр. 1940 года была уменьшена длина ствола и упрощена конструкция дистанционного крана. Тем самым сократилась длина миномёта и вес уменьшился до 9 кг. На плите миномёта имелся козырёк, предназначенный для защиты расчёта от пороховых газов.

Тем не менее, устранить все недостатки без кардинального изменения конструкции миномёта не удалось. До начала Великой Отечественной войны было произведено более 30 тыс. 50-мм миномётов.

В ходе войны был создан миномёт образца 1941 года, который был создан в СКБ под руководством конструктора В. Н. Шамарина. На нём отсутствовала двунога, крепление всех элементов производилось только к опорной плите, дистанционный кран с отводом газов вверх. Плита миномета штампосварная мембранного типа. Вес миномета в боевом положении около 10 кг.

Миномёт Шамарина по сравнению с предыдущими образцами стал значительно проще и дешевле. Повысились эксплуатационные свойства миномёта.

Хотя дальность и эффективность огня остались прежними, 50-мм ротный миномёт обр. 1941 года пользовался популярностью в войсках, являясь зачастую единственным средством огневой поддержки советской пехоты в звене рота-взвод.

В 1943 году 50-мм ротные миномёты были сняты с вооружения и изъяты из войск. Произошло это из-за их невысокой боевой эффективности и перехода к наступательным операциям.

Значительное количество произведённых 50-мм миномётных мин было переделано в ручные осколочные гранаты.

При этом штатный головной взрыватель мгновенного действия и хвостовая часть изымались, а вместо головного взрывателя вкручивался взрыватель УЗРГ-1, который во время войны применялся в ручных осколочных гранатах Ф-1 и РГ-42.

В 1934 году, после изучения миномёта Стокса-Брандта, под руководством инженера Н. А. Доровлёва в СССР был создан 82-мм миномёт. В течение двух лет миномёт испытывался и сравнивался с зарубежными образцами, и в 1936 году поступил на вооружение РККА.

Выбор калибра обосновывался тем, что мины 81-мм миномётов иностранных армий могли быть использованы при стрельбе из советских миномётов, в то время как 82-мм отечественные миномётные мины не были пригодны для стрельбы из миномётов иностранных армий. Но, скорее всего это было связано либо с боязнью конструкторов заклинивания мин в каналах минометов, либо было решено округлить калибр с 81,4 мм до 82 мм для упрощения документации и подготовки производства.


82-мм батальонный миномёт обр. 1936 г.

82-мм миномет обр. 1936 г. являлся первым советским батальонным минометом и предназначался для подавления огневых точек, поражения живой силы, разрушения проволочных заграждений и уничтожения материальной части противника, расположенных за укрытиями и недоступных для настильного стрелкового и артиллерийского огня, а также расположенных открыто.

Миномёт весом в боевом положении около 63 кг вёл огонь 3,10-кг минами на дальность до 3040 м, со скорострельностью 20-25 выстр./мин. Для стрельбы применялись 82-мм осколочные и дымовые мины.


82-мм минометная мина

Оружие сочетало достаточную эффективность выстрела с возможностью переноски пехотинцами: миномёт в походном положении весил 61 кг и разбирался для переноски на три части - ствол (вес во вьюке - 19 кг), двунога (20 кг) и опорная плита (22 кг). Помимо самого миномёта расчет нес боеприпасы к нему - лоток с тремя минами весил 12 кг, вьюк с двумя лотками - 26 кг. Скорострельность миномёта составляла до 25 выстрелов в минуту, причем опытный расчет мог поразить цель с 3-4 выстрелов.

Боевую проверку 82-мм минометы обр. 1936 г. прошли в боях с японскими войсками у озера Хасан и на реке Халхин-Гол. В боях на реке Халхин-Гол было использовано 52 миномета, составлявших около 10% всей полевой артиллерии. Несмотря на выявившиеся в ходе боевых действий такие недостатки конструкции, как малый угол горизонтальной наводки и необходимость разборки миномета при переносе на поле боя, минометы заслужили высокую оценку войск. В ходе боев было израсходовано 46,6 тысячи мин.

В 1937 году в конструкцию миномёта внесли изменения с целью повышения технологичности и боевой эффективности. В частности, была изменена форма опорной плиты - у миномёта образца 1937 года стала круглой.


82-мм батальонный миномёт обр. 1937 г.

К началу Великой Отечественной войны в Красной Армии насчитывалось 14 200 шт. 82-мм миномётов.

82-мм батальонный миномет обр. 1941 г. отличался от обр. 1937 г. наличием отделяемого колесного хода, опорной плитой арочной конструкции, а также двуногой иной конструкции. Колеса надевались на полуоси ног двуноги и при стрельбе снимались.

Конструктивные усовершенствования были подчинены технологическим возможностям производства и направлены на уменьшение массы миномета, трудозатрат при его изготовлении и улучшении маневренных характеристик. Баллистические характеристики миномета обр. 1941 года были аналогичны образцу 1937 года.

82-мм миномет обр. 1941 года был более удобен при транспортировке по сравнению с обр. 1937 года, но был менее устойчив при стрельбе и имел худшую кучность по сравнению с обр. 1937 года.

С целью устранения недостатков 82-мм миномета обр. 1941 года была проведена его модернизация. В ходе нее была изменена конструкция двуноги, колеса и крепления прицела. Модернизированный миномет получил название 82-мм миномет обр. 1943 года.

В ходе войны предпринимались попытки повышения мобильности миномётных подразделений. Миномёты устанавливались на автомобили повышенной проходимости, на грузовики и коляски мотоциклов. Особенно актуально это стало после перехода нашей армии к наступательным операциям.

82-мм минометные мины, уступая по массе 76-мм снаряду полкового орудия в два раза, не уступали ему по осколочному действию. При этом батальонный миномёт был в несколько раз легче и дешевле.

По материалам:
http://ru-artillery.livejournal.com/33102.html
http://dresden43435.mybb.ru/viewtopic.php?id=49&p=2
http://infoguns.com/minomety/vtoroy-mir-voiny/sovetskie-legkie-minomety.html

Кумулятивный эффект направленного взрыва стал известен ещё в 19-м веке, вскоре после начала массового производства бризантных взрывчатых веществ. Первая же научная работа, посвященная этому вопросу, была опубликована в 1915 году в Великобритании.

Этот эффект достигается приданием специальной формы зарядам взрывчатых веществ. Обычно для этой цели заряды изготовляют с выемкой в противоположной от его детонатора части. При инициировании взрыва сходящийся поток продуктов детонации формируется в высокоскоростную кумулятивную струю, причём кумулятивный эффект увеличивается при облицовке выемки слоем металла (толщиной 1-2 мм). Скорость струи металла достигает 10 км/с. По сравнению с расширяющимися продуктами детонации обычных зарядов в сходящемся потоке продуктов кумулятивного заряда давление и плотности вещества и энергии значительно выше, что обеспечивает направленное действие взрыва и высокую пробивную силу кумулятивной струи.

При схлопывании конической оболочки скорости отдельных частей струи оказываются несколько различными, в результате струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания из-за удлинения струи. Толщина брони, пробиваемой кумулятивными снарядами, не зависит от дальности стрельбы и примерно равна их калибру. При значительных расстояниях между зарядом и мишенью струя разрывается на части, и эффект пробития снижается.

В 30-е годы XX века произошло массовое насыщение войск танками и бронемашинами. Помимо традиционных средств борьбы с ними, в довоенное время в некоторых странах велись разработки кумулятивных снарядов.
Особенно заманчивым было то, что бронепробиваемость таких боеприпасов не зависела от скорости встречи с бронёй. Это позволяло с успехом их применять для поражения танков в артиллерийских системах изначально для этого не предназначенных, а также создать высокоэффективные противотанковые мины и гранаты. Больше всего в создании кумулятивных противотанковых боеприпасов продвинулась Германия, к моменту нападения на СССР там были созданы и приняты на вооружение кумулятивные артиллерийские снаряды калибра 75-105-мм.

К сожалению, в Советском Союзе до войны этому направлению должного внимания не уделялось. В нашей стране совершенствование противотанковых средств шло путём наращивания калибров противотанковых пушек и увеличения начальных скоростей бронебойных снарядов. Справедливости ради стоит сказать, что в СССР в конце 30-х была выпущена и испытана стрельбой опытная партия 76-мм кумулятивных снарядов. Во время испытаний выяснилось, что кумулятивные снаряды, оснащённые штатными взрывателями от осколочных снарядов, как правило, броню не пробивают и дают рикошеты. Очевидно, что дело было во взрывателях, однако военные, и без того не проявлявшие особого интереса к таким снарядам, после неудачных стрельб окончательно от них отказались.

В это же время в СССР было изготовлено значительное количество безоткатных (динамореактивных) пушек Курчевского.


76-мм безоткатное орудие Курчевского на шасси грузовика

Достоинством подобных систем является небольшой вес и меньшая стоимость по сравнению с «классическими» орудиями. Безоткатки в сочетании с кумулятивными снарядами вполне успешно могли бы проявить себя в качестве противотанкового .

С началом боевых действий с фронтов стали поступать сообщения о том, что немецкая артиллерия применяет неизвестные ранее так называемые «бронепрожигающие» снаряды, эффективно поражающие танки. При осмотре подбитых танков обратили внимание, на характерный вид пробоин с оплавленными краями. Поначалу было высказана версия, что в неизвестных снарядах используется «быстрогорящий термит», ускоряемый пороховыми газами. Однако экспериментальным путём это предположение вскоре было опровергнуто. Было установлено, что процессы горения термитных зажигательных составов и взаимодействия струи шлаков с металлом брони танка протекают слишком медленно и не могут быть реализованы за очень короткое время пробития брони снарядом. В это время с фронта были доставлены образцы захваченных у немцев «бронепрожигающих» снарядов. Оказалось, что их конструкция основана на использовании кумулятивного эффекта взрыва.

В начале 1942 года, конструкторы М.Я. Васильев, З.В. Владимирова и Н.С. Житких спроектировали 76-мм кумулятивный снаряд с конусной кумулятивной выемкой, облицованной стальной оболочкой. Был использован корпус артиллерийского снаряда с донным снаряжением, камера которого дополнительно растачивалась на конус в головной ее части. В снаряде применили мощное взрывчатое вещество - сплав тротила с гексогеном. Донное отверстие и пробка служили для установки дополнительного детонатора и лучевого капсюля-детонатора. Большой проблемой стало отсутствие в производстве подходящего взрывателя. После ряда экспериментов был выбран авиационный взрыватель мгновенного действия АМ-6.

Кумулятивные снаряды, имевшие бронепробиваемость порядка 70-75 мм, появились в боекомплекте полковых орудий с 1943 года, и изготовлялись серийно в течение всей войны.


Полковое 76-мм орудие обр. 1927 г.

Промышленность поставила фронту около 1,1 млн. 76-мм кумулятивных противотанковых снарядов. К сожалению, использовать их в танковых и дивизионных 76-мм орудиях из-за ненадёжной работы взрывателя и опасности взрыва в стволе было запрещено. Взрыватели для кумулятивных артиллерийских снарядов, удовлетворяющие требованиям безопасности при стрельбе из длинноствольных орудий, были созданы только в конце 1944 года.

В 1942 году группой конструкторов в составе И.П. Дзюбы, Н.П. Казейкина, И.П. Кучеренко, В.Я. Матюшкина и А.А. Гринберга были разработаны кумулятивные противотанковые снаряды к 122-мм гаубицам.

122-мм кумулятивный снаряд к гаубице образца 1938 г. имел корпус из сталистого чугуна, снаряжался эффективным взрывчатым составом на основе гексогена и мощным тэновым детонатором. 122-мм кумулятивный снаряд комплектовали взрывателем мгновенного действия В-229, который был разработан в очень сжатые сроки в ЦКБ-22, руководимом А.Я. Карповым.


122-мм гаубица М-30 обр. 1938 г.

Снаряд был принят на вооружение, запущен в массовое производство в начале 1943 года, и успел принять участие в Курской битве. До конца войны было произведено более 100 тыс. 122-мм кумулятивных снарядов. Снаряд пробивал броню толщиной до 150 мм по нормали, обеспечивая поражение тяжелых немецких танков «Тигр» и «Пантера». Однако эффективная дальность стрельбы из гаубиц по маневрирующим танкам была самоубийственной - 400 метров.

Создание кумулятивных снарядов открыло большие возможности для использования артиллерийских орудий с относительно небольшими начальными скоростями - 76-мм полковых пушек образцов 1927 и 1943 гг. и 122-мм гаубиц образца 1938 г., которые в больших количествах имелись в армии. Наличие кумулятивных снарядов в боекомплектах этих орудий значительно повысило эффективность их противотанкового огня. Это значительно усилило противотанковую оборону советских стрелковых дивизий.

Одной из основных задач принятого на вооружение в начале 1941 года бронированного штурмовика Ил-2 была борьба с бронетехникой.
Однако имеющееся на вооружении штурмовиков пушечное вооружение позволяло эффективно поражать только легкобронированную технику.
Реактивные 82-132-мм снаряды не обладали требуемой точностью стрельбы. Тем не менее, для вооружения Ил-2 в 1942 году были разработаны кумулятивные РБСК-82.


Головная часть реактивного снаряда РБСК-82 состояла из стального цилиндра с толщиной стенок 8 мм. В переднюю часть цилиндра закатывался конус из листового железа, создающий выемку во взрывчатом веществе, залитого в цилиндр головки снаряда. По центру цилиндра проходила трубка, которая служила «для передачи луча огня от накольного капсюля к капсюлю-детонатору ТАТ-1». Снаряды испытывались в двух вариантах снаряжения ВВ: тротил и сплав 70/30 (тротил с гексогеном). Снаряды с тротилом имели очко под взрыватель АМ-А, а снаряды со сплавом 70/30 - взрыватель М-50. Взрыватели имели капсюль накольного действия типа АПУВ. Ракетная часть РБСК-82 - штатная, от ракетных снарядов М-8, снаряженных пироксилиновым порохом.

В общей сложности в ходе испытаний было израсходовано 40 штук РБСК-82, из них 18 - стрельбой в воздухе, остальные - на земле. Обстреливались трофейные немецкие танки Pz. III, StuG III и чешский танк Pz.38(t) с усиленным бронированием. Стрельба в воздухе велась по танку StuG III с пикирования под углом 30° залпами по 2-4 снаряда в одном заходе. Дистанция стрельбы 200 м. Снаряды показали хорошую устойчивость на траектории полета, но ни одного опадания в танк получить не удалось.

Реактивный бронебойный снаряд кумулятивного действия РБСК-82, снаряженный сплавом 70/30, пробивал броню толщиной 30 мм под любыми углами встречи, а броню толщиной 50 мм пробивал под прямым углом, но не пробивает под углом встречи 30°. Видимо, низкая бронепробиваемость является следствием запаздывания в срабатывании взрывателя «от рикошета и кумулятивная струя формируется при деформированном конусе».

Снаряды РБСК-82 в тротиловом снаряжении пробивали броню толщиной 30 мм лишь под углами встречи не менее 30°, а броню 50 мм - не пробивали ни при каких условиях попадания. Отверстия, получаемые при сквозном пробитии брони, имели диаметр до 35 мм. В большинстве случаев пробитие брони сопровождалось отколом металла вокруг выходного отверстия.

На вооружение кумулятивные РСы не принимались ввиду отсутствия явного преимущества перед штатными реактивными снарядами. На подходе уже было новое, гораздо более сильное оружие - ПТАБы.

Приоритет в разработке мелких авиационных бомб кумулятивного действия принадлежит отечественным ученым и конструкторам. В середине 1942 года известный разработчик взрывателей И.А. Ларионов, предложил конструкцию легкой противотанковой авиабомбы кумулятивного действия. Командование ВВС проявило заинтересованность в реализации предложения. ЦКБ-22 быстро провело проектировочные работы и испытания новой бомбы начались в конце 1942 года. Окончательный вариант представлял собой ПТАБ-2,5-1,5, т.е. противотанковую авиационную бомбу кумулятивного действия массой 1,5 кг в габаритах 2,5-кг авиационной осколочной бомбы. ГКО в срочном порядке решил принять на вооружение ПТАБ-2,5-1,5 и организовать ее массовое производство.

У первых ПТАБ-2,5-1,5 корпуса и клепаные стабилизаторы перисто-цилиндрической формы изготовляли из листовой стали толщиной 0,6 мм. Для увеличения осколочного действия на цилиндрическую часть бомбы дополнительно надевали стальную 1,5-мм рубашку. Боевой заряд ПТАБ состоял из смесевого BB типа ТГА, снаряженного через донное очко. Для предохранения крыльчатки взрывателя АД-А от самопроизвольного свертывания на стабилизатор бомбы надевали специальный предохранитель из жестяной пластины квадратной формы с закрепленной на ней вилкой из двух проволочных усов, проходящих между лопастями. После сбрасывания ПТАБ с самолета его срывало с бомбы встречным потоком воздуха.

При ударе о броню танка срабатывал взрыватель, который через тетриловую детонаторную шашку вызывал детонацию заряда взрывчатого вещества. При детонации заряда, благодаря наличию кумулятивной воронки и металлического конуса в ней, создавалась кумулятивная струя, которая, как показали полигонные испытания, пробивала броню толщиной до 60 мм при угле встречи 30° с последующим разрушающим действием за броней: поражение экипажа танка, инициирование детонации боеприпасов, а также воспламенение горючего или его паров.

В бомбовую зарядку самолета Ил-2 входило до 192 авиабомб ПТАБ-2,5-1,5 в 4-х кассетах мелких бомб (по 48 штук в каждой) или до 220 штук при их рациональном размещении навалом в 4-х бомбоотсеках.

Принятие на вооружение ПТАБ какое-то время держалось в секрете, их применение без разрешения верховного командования было запрещено. Это позволило использовать эффект внезапности и эффективно применить новое оружие в сражении под Курском.

Массовое применение ПТАБ имело ошеломляющий эффект тактической неожиданности и оказало сильное моральное воздействие на противника. Немецкие танкисты, впрочем, как и советские, к третьему году войны уже привыкли к относительно низкой эффективности бомбоштурмовых ударов авиации. На начальном этапе сражения немцы совершенно не применяли рассредоточенные походные и предбоевые порядки, то есть на маршрутах движения в составе колонн, в местах сосредоточения и на исходных позициях, за что и были жестоко наказаны - полоса разлета ПТАБ перекрывала 2-3 танка, удаленных один от другого на 60-75 м, вследствие чего последние несли ощутимые потери, даже в условиях отсутствия массированного применения Ил-2. Один Ил-2 с высоты 75-100 метров мог накрыть площадь 15х75 метров, уничтожив на ней всю вражескую технику.
В среднем во время войны безвозвратные потери танков от действий авиации не превышали 5%, после применения ПТАБ на отдельных участках фронта это показатель превысил 20%.

Оправившись от шока, немецкие танкисты вскоре перешли исключительно к рассредоточенным походным и предбоевым порядкам. Естественно, это сильно затруднило управление танковыми частями и подразделениями, увеличило сроки их развертывания, сосредоточения и передислокации, усложнило взаимодействие между ними. На стоянках немецкие танкисты стали располагать свои машины под деревьями, легкими сеточными навесами и устанавливать над крышей башни и корпуса легкие металлические сетки. Эффективность ударов Ил-2 с применением ПТАБ снизилась примерно в 4-4,5 раза, оставаясь, тем не менее, в среднем в 2-3 раза выше, чем при использовании фугасных и осколочно-фугасных авиабомб.

В 1944 году на вооружение была принята более мощная противотанковая бомба ПТАБ-10-2,5, в габаритах 10-кг авиационной бомбы. Она обеспечивала пробитие брони толщиной до 160 мм. По принципу действия и назначению основных узлов и элементов ПТАБ-10-2,5 была аналогична ПТАБ-2,5-1,5 и отличалась от нее только формой и габаритами.

На вооружении РККА в 1920-1930-е годы состоял дульнозарядный «гранатомет Дьяконова», созданный еще в конце Первой мировой войны и впоследствии модернизированный.

Он представлял собой мортирку калибра 41-мм, которая надевалась на ствол винтовки, фиксируясь на мушке вырезом. Накануне Великой Отечественной войны гранатомет имелся в каждом стрелковом и кавалерийском отделении. Тогда же встал вопрос о придании ружейному гранатомету «противотанковых» свойств.

В ходе Второй мировой войны, в 1944 году на вооружение РККА поступила кумулятивная граната ВКГ-40. Выстреливалась граната специальным холостым патроном с 2,75 г пороха марки ВП или П-45. Уменьшенный заряд холостого патрона позволял стрелять гранатой прямой наводкой с упором приклада в плечо, на дальность до 150 метров.

Винтовочная кумулятивная граната предназначена для борьбы с легкобронированной техникой и с подвижными средствами противника, не защищенными броней, а также с огневыми точками. Использовалась ВКГ-40 весьма ограниченно, что объясняется низкой кучностью стрельбы и слабой бронепробиваемостью.

Во время войны в СССР было выпущено значительное количество ручных противотанковых гранат. Первоначально это были гранаты фугасного действия, по мере увеличения толщины брони увеличивался и вес противотанковых гранат. Однако это всё равно не обеспечивало пробития брони средних танков, так граната РПГ-41 при весе взрывчатого вещества 1400 г могла пробить 25-мм броню.

Излишне говорить, какую опасность представляло это противотанковое средство для того, кто её применял.

В середине 1943 года на вооружение Красной Армии принимается принципиально новая граната кумулятивного действия РПГ-43, разработанная Н.П. Беляковым. Это была первая кумулятивная ручная граната, разработанная в СССР.


Ручная кумулятивная граната РПГ-43 в разрезе

РПГ-43 имела корпус с плоским дном и конической крышкой, деревянную рукоятку с предохранительным механизмом, ленточный стабилизатор и ударно-воспламеняющий механизм с запалом. Внутри корпуса помещается разрывной заряд с кумулятивной выемкой конической формы, облицованной тонким слоем металла, и стаканчик с закрепленными в его дне предохранительной пружиной и жалом.

На ее переднем конце рукоятки закреплена металлическая втулка, внутри которой находятся держатель запала и удерживающая его в крайнем заднем положении шпилька. Снаружи на втулку надета пружина и уложены матерчатые ленты, крепящиеся к колпаку стабилизатора. Предохранительный механизм состоит из откидной планки и чеки. Откидная планка служит для удержания колпака стабилизатора на ручке гранаты до ее броска, не позволяя ему сползать или проворачиваться на месте.

Во время броска гранаты откидная планка отделяется и освобождает колпачок стабилизатора, который под действием пружины сползает с рукоятки и вытягивает за собой ленты. Предохранительная шпилька выпадает под собственным весом, освобождая держатель запала. Благодаря наличию стабилизатора полет гранаты происходил головной частью вперед, что необходимо для оптимального использования энергии кумулятивного заряда гранаты. При ударе гранаты о преграду дном корпуса запал, преодолевая сопротивление предохранительной пружины, накалывается на жало капсюлем-детонатором, что вызывает подрыв разрывного заряда. Кумулятивный заряд РПГ-43 пробивал броню толщиной до 75 мм.

С появлением на поле боя немецких тяжелых танков потребовалась ручная противотанковая граната с большей бронепробиваемостью. Группа конструкторов в составе М.З. Полеванова, Л.Б. Иоффе и Н.С. Житких разработала кумулятивную гранату РПГ-6. В октябре 1943 года гранату приняли на вооружение Красной Армии. Граната РПГ-6 во многом сходна с германской PWM-1.


Немецкая ручная противотанковая граната PWM-1

РПГ-6 имела каплевидный корпус с зарядом и дополнительным детонатором и рукоятку с инерционным взрывателем, капсюлем-детонатором и ленточным стабилизатором.

Ударник взрывателя блокировался чекой. Ленты стабилизатора укладывались в рукоятке и удерживались предохранительной планкой. Предохранительный шплинт вынимался перед броском. После броска отлетала предохранительная планка, вытягивался стабилизатор, выдергивалась чека ударника - запал взводился.

Таким образом, система предохранения РПГ-6 была трехступенчатой (у РПГ-43 - двухступенчатая). В плане технологии существенной особенностью РЛГ- 6 было отсутствие точеных и резьбовых деталей, широкое применение штамповки и накатки. По сравнению с РПГ-43, РПГ-6 была технологичнее в производстве и несколько безопаснее в обращении. Метались РПГ-43 и РПГ-6 на 15-20 м, после броска бойцу следовало укрыться.

За годы войны в СССР так и не были созданы ручные противотанковые гранатометы, хотя работы в этом направлении велись. Основными противотанковыми средствами пехоты по-прежнему оставались ПТР и ручные противотанковые гранаты. Отчасти это компенсировалось значительным увеличением во второй половине войны количества противотанковой артиллерии. Но в наступлении противотанковые орудия не всегда могли сопровождать пехоту, и в случае внезапного появления танков противника это зачастую вело к большим и неоправданным потерям.


Top