Что из себя представляет ядерное оружие. Ядерная бомба – мощнейшее оружие и сила, способная урегулировать военные конфликты

Содержание статьи

ЯДЕРНОЕ ОРУЖИЕ, в отличие от обычного оружия, оказывает разрушающее действие за счет ядерной, а не механической или химической энергии. По разрушительной мощи только взрывной волны одна единица ядерного оружия может превосходить тысячи обычных бомб и артиллерийских снарядов. Кроме того, ядерный взрыв оказывает на все живое губительное тепловое и радиационное действие, причем иногда на больших площадях.

В это время велась подготовка к вторжению войск союзников в Японию. Чтобы обойтись без вторжения и избежать связанных с ним потерь – сотен тысяч жизней военнослужащих союзных войск, – 26 июля 1945 президент Трумэн из Потсдама предъявил ультиматум Японии: либо безоговорочная капитуляция, либо «быстрое и полное уничтожение». Японское правительство не ответило на ультиматум, и президент отдал приказ сбросить атомные бомбы.

6 августа самолет B-29 «Энола-Гэй», поднявшийся в воздух с базы на Марианских островах, сбросил на Хиросиму бомбу из урана-235 мощностью ок. 20 кт. Большой город состоял в основном из легких деревянных построек, но в нем было много и железобетонных зданий. Бомба, взорвавшаяся на высоте 560 м, опустошила зону площадью ок. 10 кв. км. Были разрушены практически все деревянные строения и многие даже самые прочные дома. Пожары нанесли городу непоправимый ущерб. Было убито и ранено 140 тыс. человек из 255-тысячного населения города.

Японское правительство и после этого не сделало недвусмысленного заявления о капитуляции, и поэтому 9 августа была сброшена вторая бомба – на этот раз на Нагасаки. Людские потери, хотя и не такие, как в Хиросиме, были тем не менее огромны. Вторая бомба убедила японцев в невозможности сопротивления, и император Хирохито предпринял шаги в направлении капитуляции Японии.

В октябре 1945 президент Трумэн законодательным порядком передал ядерные исследования под гражданский контроль. Законопроектом, принятым в августе 1946, была учреждена комиссия по атомной энергии из пяти членов, назначаемых президентом США.

Эта комиссия прекратила свою деятельность 11 октября 1974, когда президент Дж.Форд создал комиссию по ядерной регламентации и управление по энергетическим исследованиям и разработкам, причем на последнее возлагалась ответственность за дальнейшие разработки ядерного оружия. В 1977 было создано министерство энергетики США, которое должно было контролировать научные исследования и разработки в области ядерного оружия.

ИСПЫТАНИЯ

Ядерные испытания проводятся в целях общего исследования ядерных реакций, совершенствования оружейной техники, проверки новых средств доставки, а также надежности и безопасности методов хранения и обслуживания оружия. Одна из главных проблем при проведении испытаний связана с необходимостью обеспечения безопасности. При всей важности вопросов защиты от прямого воздействия ударной волны, нагрева и светового излучения первостепенное значение имеет все-таки проблема радиоактивных осадков. Пока что не создано «чистого» ядерного оружия, не приводящего к выпадению радиоактивных осадков.

Испытания ядерного оружия могут проводиться в космосе, в атмосфере, на воде или на суше, под землей или под водой. Если они проводятся над землей или над водой, то в атмосферу вносится облако мелкой радиоактивной пыли, которая затем широко рассеивается. При испытаниях в атмосфере образуется зона долго сохраняющейся остаточной радиоактивности. Соединенные Штаты, Великобритания и Советский Союз отказались от атмосферных испытаний, ратифицировав в 1963 договор о запрещении ядерных испытаний в трех средах. Франция последний раз провела атмосферное испытание в 1974. Самое последнее испытание в атмосфере было проведено в КНР в 1980. После этого все испытания проводились под землей, а Францией – под океанским дном.

ДОГОВОРЫ И СОГЛАШЕНИЯ

В 1958 Соединенные Штаты и Советский Союз договорились о моратории на испытания в атмосфере. Тем не менее СССР возобновил испытания в 1961, а США – в 1962. В 1963 комиссия ООН по разоружению подготовила договор о запрещении ядерных испытаний в трех средах: атмосфере, космическом пространстве и под водой. Договор ратифицировали Соединенные Штаты, Советский Союз, Великобритания и свыше 100 других государств-членов ООН. (Франция и КНР тогда его не подписали.)

В 1968 был открыт к подписанию договор о нераспространении ядерного оружия, подготовленный тоже комиссией ООН по разоружению. К середине 1990-х годов его ратифицировали все пять ядерных держав, а всего подписали 181 государство. В число 13 не подписавших входили Израиль, Индия, Пакистан и Бразилия. Договор о нераспространении ядерного оружия запрещает владеть ядерным оружием всем странам, кроме пяти ядерных держав (Великобритании, КНР, России, Соединенных Штатов и Франции). В 1995 этот договор был продлен на неопределенный срок.

Среди двусторонних соглашений, заключенных между США и СССР, были договоры об ограничении стратегических вооружений (ОСВ-I в 1972, ОСВ-II в 1979), об ограничении подземных испытаний ядерного оружия (1974) и о подземных ядерных взрывах в мирных целях (1976).

В конце 1980-х годов упор был перенесен со сдерживания роста вооружений и ограничения ядерных испытаний на сокращение ядерных арсеналов сверхдержав. Договор о ядерных вооружениях средней и меньшей дальности, подписанный в 1987, обязывал обе державы ликвидировать свои запасы ядерных ракет наземного базирования с дальностью 500–5500 км. Переговоры между США и СССР о сокращении наступательных вооружений (СНВ), проводившиеся как продолжение переговоров ОСВ, завершились в июле 1991 заключением договора (СНВ-1), по которому обе стороны согласились сократить примерно на 30% свои запасы ядерных баллистических ракет большой дальности. В мае 1992, когда распался Советский Союз, США подписали соглашение (т.н. Лиссабонский протокол) с бывшими республиками СССР, владевшими ядерным оружием, – Россией, Украиной, Белоруссией и Казахстаном, – в соответствии с которым все стороны обязаны выполнять договор СНВ-1. Был также подписан договор СНВ-2 между Россией и США. Им устанавливается предельное число боеголовок для каждой из сторон, равное 3500. Сенат США ратифицировал этот договор в 1996.

Договором по Антарктике от 1959 был введен принцип безъядерной зоны. С 1967 вошел в силу договор о запрещении ядерного оружия в Латинской Америке (Тлателолькский договор), а также договор о мирном исследовании и использовании космического пространства. Велись переговоры и о других безъядерных зонах.

РАЗРАБОТКИ В ДРУГИХ СТРАНАХ

Советский Союз взорвал свою первую атомную бомбу в 1949, а термоядерную – в 1953. В арсеналах СССР имелось тактическое и стратегическое ядерное оружие, в том числе совершенные системы доставки. После распада СССР в декабре 1991 российский президент Б.Ельцин стал добиваться того, чтобы ядерное оружие, размещенное на Украине, в Белоруссии и Казахстане, было перевезено для ликвидации или хранения в Россию. Всего к июню 1996 было приведено в неработоспособное состояние 2700 боеголовок в Белоруссии, Казахстане и Украине, а также 1000 – в России.

В 1952 Великобритания взорвала свою первую атомную бомбу, а в 1957 – водородную. Эта страна полагается на небольшой стратегический арсенал баллистических ракет подводного базирования БРПЛ (т.е. запускаемых с подлодок), а также на использование (до 1998) авиационных средств доставки.

Франция провела испытания ядерного оружия в пустыне Сахара в 1960, а термоядерного – в 1968. До начала 1990-х годов французский арсенал тактического ядерного оружия состоял из баллистических ракет малой дальности и ядерных бомб, доставляемых самолетами. Стратегические вооружения Франции – это баллистические ракеты промежуточной дальности и БРПЛ, а также ядерные бомбардировщики. В 1992 Франция приостановила проведение испытаний ядерного оружия, но в 1995 возобновила их – для модернизации боеголовок ракет подводного базирования. В марте 1996 французское правительство объявило, что полигон для запуска стратегических баллистических ракет, расположенный на плато д"Альбион в центральной Франции, будет поэтапно ликвидирован.

КНР в 1964 стала пятой ядерной державой, а в 1967 взорвала термоядерное устройство. Стратегический арсенал КНР состоит из ядерных бомбардировщиков и баллистических ракет промежуточной дальности, а тактический – из баллистических ракет средней дальности. В начале 1990-х годов КНР дополнила свой стратегический арсенал баллистическими ракетами подводного базирования. После апреля 1996 КНР оставалась единственной ядерной державой, не прекратившей ядерных испытаний.

Распространение ядерного оружия.

Кроме перечисленных выше, имеются и другие страны, располагающие технологией, необходимой для разработки и создания ядерного оружия, но те из них, которые подписали договор о нераспространении ядерного оружия, отказались от применения ядерной энергии в военных целях. Известно, что Израиль, Пакистан и Индия, не подписавшие названного договора, имеют ядерное оружие. КНДР, подписавшая договор, подозревается в скрытном проведении работ по созданию ядерного оружия. В 1992 ЮАР объявила, что в ее распоряжении имелось шесть единиц ядерного оружия, но они были уничтожены, и ратифицировала договор о нераспространении. Инспектирование, проведенное специальной комиссией ООН и МАГАТЭ в Ираке после войны в Персидском заливе (1990–1991), показало, что у Ирака имелась серьезно поставленная программа разработки ядерного, биологического и химического оружия. Что касается его ядерной программы, то ко времени войны в Персидском заливе Ираку оставалось лишь два-три года до создания готового к применению ядерного оружия. Правительства Израиля и США утверждают, что своя программа разработки ядерного оружия имеется у Ирана. Но Иран подписал договор о нераспространении, а в 1994 вошло в силу соглашение с МАГАТЭ о международном контроле. С тех пор инспекторы МАГАТЭ не сообщали фактов, свидетельствующих о работах по созданию ядерного оружия в Иране.

ДЕЙСТВИЕ ЯДЕРНОГО ВЗРЫВА

Ядерное оружие предназначено для уничтожения живой силы и военных объектов противника. Важнейшими поражающими факторами для людей являются ударная волна, световое излучение и проникающая радиация; разрушающее действие на военные объекты обусловлено в основном ударной волной и вторичными тепловыми эффектами.

При детонации взрывчатых веществ обычного типа почти вся энергия выделяется в виде кинетической энергии, которая практически полностью переходит в энергию ударной волны. При ядерном и термоядерном взрывах по реакции деления ок. 50% всей энергии переходит в энергию ударной волны, а ок. 35% – в световое излучение. Остальные 15% энергии высвобождаются в форме разных видов проникающей радиации.

При ядерном взрыве образуется сильно нагретая, светящаяся, приблизительно сферическая масса – т.н. огненный шар. Он сразу же начинает расширяться, охлаждаться и подниматься вверх. По мере его охлаждения пары в огненном шаре конденсируются, образуя облако, содержащее твердые частицы материала бомбы и капельки воды, что придает ему вид обычного облака. Возникает сильная воздушная тяга, всасывающая в атомное облако подвижный материал с поверхности земли. Облако поднимается, но через некоторое время начинает медленно опускаться. Опустившись до уровня, на котором его плотность близка к плотности окружающего воздуха, облако расширяется, принимая характерную грибовидную форму.

Таблица 1. Действие ударной волны
Таблица 1. ДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ
Объекты и избыточное давление, необходимое для их серьезного повреждения Радиус серьезного повреждения, м
5 кт 10 кт 20 кт
Танки (0,2 МПа) 120 150 200
Автомашины (0,085 МПа) 600 700 800
Люди в застроенной местности (вследствие предсказуемых вторичных эффектов) 600 800 1000
Люди на открытой местности (вследствие предсказуемых вторичных эффектов) 800 1000 1400
Железобетонные здания (0,055 МПа) 850 1100 1300
Самолеты на земле (0,03 МПа) 1300 1700 2100
Каркасные здания (0,04 МПа) 1600 2000 2500

Прямое энергетическое действие.

Действие ударной волны.

Через долю секунды после взрыва от огненного шара распространяется ударная волна – как бы движущаяся стена горячего сжатого воздуха. Толщина этой ударной волны значительно больше, чем при обычном взрыве, и поэтому она дольше воздействует на встречный объект. Скачок давления причиняет ущерб из-за увлекающего действия, приводящего к перекатыванию, обрушению и разметыванию объектов. Сила ударной волны характеризуется создаваемым ею избыточным давлением, т.е. превышением нормального атмосферного давления. При этом пустотелые структуры легче разрушаются, нежели сплошные или армированные. Приземистые и подземные сооружения в меньшей мере подвержены разрушительному действию ударной волны, чем высокие здания.
Тело человека обладает удивительной стойкостью к ударной волне. Поэтому прямое воздействие избыточного давления ударной волны не приводит к значительным людским потерям. Большей частью люди гибнут под обломками обрушивающихся зданий и получают травмы от быстро движущихся предметов. В табл. 1 представлен ряд различных объектов с указанием избыточного давления, вызывающего серьезные повреждения, и радиуса зоны, в которой наблюдается серьезное повреждение при взрывах мощностью 5, 10 и 20 кт тротилового эквивалента.

Действие светового излучения.

Как только возникает огненный шар, он начинает испускать световое излучение, в том числе инфракрасное и ультрафиолетовое. Происходят две вспышки светового излучения: интенсивная, но малой длительности, при взрыве, обычно слишком короткая, чтобы вызвать значительные людские потери, а затем вторая, менее интенсивная, но более длительная. Вторая вспышка оказывается причиной почти всех людских потерь, обусловленных световым излучением.
Световое излучение распространяется прямолинейно и действует в пределах видимости огненного шара, но не обладает сколько-нибудь значительной проникающей способностью. Надежной защитой от него может быть непрозрачная ткань, например палаточная, хотя сама она может загореться. Светлоокрашенные ткани отражают световое излучение, а поэтому требуют для воспламенения большей энергии излучения, чем темные. После первой вспышки света можно успеть спрятаться за тем или иным укрытием от второй вспышки. Степень поражения человека световым излучением зависит от того, в какой мере открыта поверхность его тела.
Прямое действие светового излучения обычно не приводит к большим повреждениям материалов. Но поскольку такое излучение вызывает возгорание, оно может причинять большой ущерб вследствие вторичных эффектов, о чем свидетельствуют колоссальные пожары в Хиросиме и Нагасаки.

Проникающая радиация .

Начальная радиация, состоящая в основном из гамма-излучения и нейтронов, испускается самим взрывом в течение примерно 60 с. Она действует в пределах прямой видимости. Ее поражающее действие можно уменьшить, если, заметив первую взрывную вспышку, сразу спрятаться в укрытие. Начальная радиация обладает значительной проникающей способностью, так что для защиты от нее требуется толстый лист металла или толстый слой грунта. Стальной лист толщиной 40 мм пропускает половину падающей на него радиации. Как поглотитель радиации сталь в 4 раза эффективнее бетона, в 5 раз – земли, в 8 раз – воды, и в 16 раз – дерева. Но она в 3 раза менее эффективна, чем свинец.
Остаточная радиация испускается длительное время. Она может быть связана с наведенной радиоактивностью и с радиоактивными осадками. В результате действия нейтронной составляющей начальной радиации на грунт вблизи эпицентра взрыва грунт становится радиоактивным. При взрывах на поверхности земли и на небольшой высоте наведенная радиоактивность особенно велика и может сохраняться длительное время.
«Радиоактивными осадками» называется загрязнение частицами, выпадающими из радиоактивного облака. Это частицы делящегося материала самой бомбы, а также материала, затянутого в атомное облако с земли и ставшего радиоактивным в результате облучения нейтронами, высвобождающимися в ходе ядерной реакции. Такие частицы постепенно оседают, что приводит к радиоактивному загрязнению поверхностей. Более тяжелые из них быстро оседают неподалеку от места взрыва. Более легкие радиоактивные частицы, уносимые ветром, могут оседать на расстоянии многих километров, заражая большие площади на протяжении длительного времени.
Прямые людские потери от радиоактивных осадков могут быть значительны вблизи эпицентра взрыва. Но с увеличением расстояния от эпицентра интенсивность радиации быстро уменьшается.

Виды поражающего действия радиации.

Радиация разрушает ткани тела. Поглощенная доза излучения – это энергетическая величина, измеряемая в радах (1 рад = 0,01 Дж/кг) для всех видов проникающего излучения. Разные виды излучения оказывают разное действие на организм человека. Поэтому экспозиционная доза рентгеновского и гамма-излучения измеряется в рентгенах (1Р = 2,58×10–4 Кл/кг). Вред, нанесенный человеческой ткани поглощением радиации, оценивается в единицах эквивалентной дозы излучения – бэрах (бэр – биологический эквивалент рентгена). Чтобы вычислить дозу в рентгенах, необходимо дозу в радах умножить на т.н. относительную биологическую эффективность рассматриваемого вида проникающей радиации.
Все люди на протяжении своей жизни поглощают некоторое природное (фоновое) проникающее излучение, а многие – искусственное, например рентгеновское. Человеческий организм, по-видимому, справляется с таким уровнем облучения. Вредные же последствия наблюдаются тогда, когда либо полная накопленная доза слишком велика, либо облучение произошло за короткое время. (Правда, доза, полученная в результате равномерного облучения на протяжении более длительного времени, тоже может приводить к тяжелым последствиям.)
Как правило, полученная доза облучения не приводит к немедленному поражению. Даже летальные дозы могут в течение часа и более никак не сказываться. Ожидаемые результаты облучения (всего тела) человека разными дозами проникающей радиации представлены в табл. 2.

Таблица 2. Биологическая реакция людей на проникающую радиацию
Таблица 2. БИОЛОГИЧЕСКАЯ РЕАКЦИЯ ЛЮДЕЙ НА ПРОНИКАЮЩУЮ РАДИАЦИЮ
Номинальная доза, рад Появление первых симптомов Снижение боеспособности Госпитализация и дальнейшее протекание
0–70 В пределах 6 ч легкие случаи проходящей головной боли и тошноты – до 5% группы в верхней части диапазона дозы. Нет. Госпитализация не требуется. Работоспособность сохраняется.
70–150 В пределах 3–6 ч проходящая слабая головная боль и тошнота. Слабая рвота – до 50% группы. Небольшое снижение способности выполнять свои обязанности у 25% группы. До 5% могут быть небоеспособ-ными. Возможна госпитализация (20–30 сут) менее чем 5% в верхней части диапазона дозы. Возвращение в строй, летальные исходы крайне маловероятны.
150–450 В пределах 3 ч головная боль, тошнота и слабость. Легкие случаи поноса. Рвота – до 50% группы. Сохраняется способность выполнять простые задачи. Способность выполнять боевые и сложные задачи может быть снижена. Свыше 5% небоеспособных в нижней части диапазона дозы (больше – с увеличением дозы). Показана госпитализация (30–90 сут) после латентного периода 10–30 сут. Смертельные исходы (от 5% и менее до 50% в верхней части диапазона дозы). При наибольших дозах возвращение в строй маловероятно.
450–800 В пределах 1 ч сильная тошнота и рвота. Понос, лихорадочное состояние в верхней части диапазона. Сохраняется способность выполнять простые задачи. Значительное снижение боеспособности в верхней части диапазона на период более 24 ч. Госпитализация (90–120 сут) для всей группы. Латентный период 7–20 сут. 50% смертельных исходов в нижней части диапазона с увеличением к верхнему пределу. 100% смертельных исходов в пределах 45 сут.
800–3000 В пределах 0,5–1 ч сильные и продолжительные рвота и понос, лихорадка Значительное снижение боеспособности. В верхней части диапазона у некоторых период временной полной небоеспособности. Показана госпитализация для 100%. Латентный период менее 7 сут. 100% смертельных исходов в пределах 14 сут.
3000–8000 В пределах 5 мин сильные и продолжительные понос и рвота, лихорадка и упадок сил. В верх-ней части диапазона дозы возможны судороги. В пределах 5 мин полный выход из строя на 30–45 мин. После этого частичное восстановление, но с функциональными расстройствами до летального исхода. Госпитализация для 100%, латентный период 1–2 сут. 100% смертельных исходов в пределах 5 сут.
> 8000 В пределах 5 мин. те же симптомы, что и выше. Полный, необратимый выход из строя. В пределах 5 мин потеря способности выполнять задачи, требующие физических усилий. Госпитализация для 100%. Латентного периода нет. 100% смертельных исходов через 15–48 ч.

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.

Уже более 50 лет человечество использует энергию мирного атома. Но проникновение в тайны атомных ядер привело и к созданию невиданного по своей мощности и последствиям оружию массового уничтожения. Речь идет о ядерном оружии. Сегодняшняя наша встреча посвящена видам, устройству и принципу его действия. Вы узнаете, чем грозит миру применение ядерных боеприпасов и как человечество борется против ядерной угрозы.

Как все начиналось

Рождение атомной эры в истории человеческой цивилизации связано с началом второй мировой войны. За год до её начала была открыта возможность реакции деления ядер тяжелых элементов, сопровождаемая выделением колоссальной энергии. Это дало возможность создания совершенно нового вида оружия, обладающего невиданной доселе разрушительной силой.

Правительства ряда стран, включая США и Германию, привлекали к реализации этих планов лучшие научные умы и не жалели средств, для того, чтобы добиться приоритета в этой сфере. Успехи нацистов в расщеплении урана побудили Альберта Эйнштейна перед началом войны обратиться с письмом к президенту США. В этом послании он предупреждал об опасности, которая грозит человечеству, если в военном арсенале нацистов появится атомная бомба.

Фашистские войска одну за другой оккупировали европейские страны. Началась вынужденная эмиграция учёных-атомщиков в США из этих стран. И в 1942 году в пустынных районах штата Нью-Мексико начал свою работу ядерный центр. Здесь собрались лучшие физики почти со всей западной Европы. Руководство этим коллективом осуществлял талантливый американский ученый Роберт Оппенгеймер.

Мощные бомбардировки Англии немецкой авиацией вынудили английское правительство добровольно передать все разработки и ведущих специалистов в этой области США. Стечение всех этих обстоятельств позволило американской стороне занять ведущее положение в создании ядерного оружия. К весне 1944 года работы были завершены. После полигонных испытаний было решено нанести ядерные удары по японским городам.

Первыми 6 августа 1945 года познали весь ужас ядерного удара жители Хиросимы. Живые существа за одно мгновение превратились в пар. А через 3 дня на головы ничего не подозревающих жителей города Нагасаки была сброшена вторая бомба под кодовым названием «Толстяк». Только тени на асфальте остались от 70 тысяч человек, бывших в это время на улице. Всего погибли более 300 000 человек, и 200 000 получили страшные ожоги, ранения и громадные дозы облучения.

Результаты этой бомбардировки потрясли мир.

Понимая всю опасность, возникшую для послевоенного мира, Советский Союз начал активнейшую деятельность по созданию эквивалентного оружия. Это были вынужденные меры, для противостояния возникшей угрозе. Курировал эту работу сам глава НКВД Лаврентий Берия. За 3,5 года он сумел в разрушенной войной стране создать совершенно новую отрасль - атомную промышленность. Научная часть была возложена на молодого советского физика-ядерщика И. В. Курчатова. В результате титанических усилий многих коллективов ученых, инженеров и других работников за четыре послевоенных года была создана первая советская атомная бомба. Она прошла успешные испытания на полигоне Семипалатинска. Упования Пентагона на монопольное владение атомным оружием не оправдались.

Виды и доставка ядерных боеприпасов

К ядерному оружию относятся боеприпасы, принцип действия которых основан на использовании ядерной энергии. Физические принципы её получения изложены в .

К таким боеприпасам относятся атомные и водородные бомбы, а также нейтронное оружие. Все перечисленные виды вооружения являются оружием массового уничтожения.

Ядерные боеприпасы устанавливаются на баллистических ракетах, авиабомбах, фугасах, торпедах и артиллерийских снарядах. К предполагаемой цели они могут доставляться крылатыми, зенитными и баллистическими ракетами, а также авиацией.

Сейчас таким оружием обладают 9 государств, в общей сложности это более 16 тысяч единиц разных видов ядерного оружия. Использование даже 0,5% этого запаса способно погубить все человечество.

Атомные бомбы

Главное различие атомного реактора и атомной бомбы состоит в том, что в реакторе течение ядерной реакции контролируется и регулируется, а при ядерном взрыве её выделение происходит практически мгновенно.

Внутри корпуса бомбы находится расщепляемый материал U-235 или Pu-239. Его масса должна превышать некое критическое значение, но до осуществления ядерного взрыва делящееся вещество разделено на две или более частей. Для начала ядерной реакции необходимо привести эти части в соприкосновение. Это осуществляется химическим взрывом тротилового заряда. Образовавшаяся при этом взрывная волна сближает все части расщепляемого материала, доводя его массу до сверхкритического значения. Для U-235 критическая масса составляет 50 кг, а для Pu–239 она равна 11 кг.

Чтобы представить всю разрушительную мощь этого оружия, достаточно представить себе, что взрыв лишь 1 кг урана, эквивалентен взрыву 20 килотонн тротилового заряда.

Для начала деления ядер необходимо воздействие нейтронов и в атомных бомбах предусмотрен их искусственный источник. Для уменьшения массы и размера расщепляемого материала, используют внутреннюю оболочку из бериллия или графита, отражающую нейтроны.

Время взрыва длиться лишь миллионные доли секунды. Однако в его эпицентре развивается температура в 10 8 К, а давление достигает фантастического значения в 10 12 атм.

Устройство и механизм действия термоядерного оружия

Противостояние США и СССР в создании сверхоружия, происходило с переменным успехом.

Особенное значение придавалось использованию энергии термоядерного синтеза, подобное тому, которое происходят на Солнце и других звездах. В их недрах происходит слияние ядер изотопов водорода, сопровождающееся образованием новых более тяжелых ядер (например, гелия) и выделением колоссальной энергии. Необходимым условием для запуска процесса термоядерного синтеза является температура в миллионы градусов и высокое давление.

Разработчики водородных бомб остановились на следующей конструкции: в корпусе располагается плутониевый запал (атомная бомба малой мощности) и ядерное горючее - соединение изотопа лития-6 с дейтерием.

Взрыв маломощного плутониевого заряда создает необходимое давление и температуру, а испускаемые при этом нейтроны, взаимодействуя с литием, образуют тритий. Синтез дейтерия и трития приводит к термоядерному взрыву со всеми вытекающими последствиями.

На этом этапе победу одержали советские ученые. «Отцом» теории водородной бомбы в Советском Союзе явился .

После ядерного взрыва

После ослепительно яркой вспышки атомного наземного взрыва образуется огромное грибовидное облако. Исходящее от него световое излучение вызывает возгорание построек, техники и растительности. Люди и животные получают ожоги разной степени, а также необратимые поражения органов зрения.

Тело ядерного гриба образуется благодаря нагретому взрывом воздуху. Воздушные массы, стремительно закручиваясь, взмывает до высоты 15-20 км, увлекая за собой частички пыли и дыма. Почти мгновенно образуется ударная волна - область огромного давления и температуры в десятки тысяч градусов. Она перемещается со скоростью в несколько раз превышающей скорость звука, сметая все на своем пути.

Следующий поражающий фактор - это проникающая радиация, состоящая из потоков гамма излучения и нейтронов. Радиация ионизирует клетки живых существ, поражая нервную систему и мозг. Время ее воздействия 10-15 секунд, а дальность 2-3 км от эпицентра взрыва.

На расстояние в сотни километров наблюдается радиоактивное загрязнение местности. Оно состоит из осколков деления ядерного горючего и усугубляется выпадением радиоактивных осадков. Интенсивность радиоактивного заражения максимальна после взрыва, но по истечению вторых суток ослабевает почти в 100 раз.

Вездесущие нейтроны, ионизируя воздух, порождают кратковременный электромагнитный импульс, который способен вывести из строя электронную аппаратуру, нарушить проводную и беспроводную системы связи.

Ядерное оружие называют оружием массового поражения, поскольку оно несет огромнейшие человеческие жертвы и разрушения непосредственно во время и сразу после взрыва. Радиация, полученная людьми и животными, оказавшимися в зоне поражения, становится причиной лучевой болезни, часто завершающейся гибелью всех облученных существ.

Нейтронное оружие

Разновидностью термоядерного оружия являются нейтронные боеприпасы. В них отсутствует оболочка, поглощающая нейтроны и помещен дополнительный источник этих частиц. Поэтому их главным поражающим фактором является проникающая радиация. Её воздействие приводит к гибели людей, оставляя почти нетронутыми постройки и технику противника.

Борьба мирового сообщества против ядерной угрозы

Совокупный запас ядерного оружия в мире сейчас эквивалентен 1 млн бомб сброшенных на Хиросиму. И тот факт, что пока удаётся жить без ядерной войны во многом заслуга ООН и всего мирового сообщества.

Страны владеющие ядерным оружием, входят в так называемый «Ядерный клуб». Сейчас он насчитывает 9 участников. Этот список расширяется.

СССР занял в ядерной политике очень чёткую позицию. В 1963 году именно в Москве был подписан договор, запрещающий испытания ядерного оружия в 3-х средах: в атмосфере, космосе и под водой.

Более всеобъемлющий договор был принят на ассамблее ООН в 1996 году. Свои подписи по ним поставили уже 131 государство.

Создана специальная комиссия, осуществляющая контроль над событиями, связанными с ядерными испытаниями. Несмотря на предпринимаемые усилия, ряд государств продолжают проводить ядерные испытания. Мы с вами стали свидетелями того, как Северная Корея провела шесть испытаний ядерного оружия. Она использует свой ядерный потенциал как акт устрашения и попытку занять господствующее положение в мире.

Российская федерация сейчас занимает второе место в мире по ядерному потенциалу. Ядерные силы России состоят из наземного, авиационного и морского компонента. Но в отличие от КНДР военная мощь нашей страны служит фактором сдерживания, обеспечивающим мирное развитие государства.

Если это сообщение тебе пригодилось, буда рада видеть тебя

История создания атомной бомбы, и в частности оружия, начинается в 1939 году, с открытия, сделанного Жолио Кюри. Именно с этого момента ученые осознали, что цепная реакция урана может стать не только источником огромной энергии, но и страшным оружием. И так, в основе устройства атомной бомбы лежит использование ядерной энергии, которая выделяется при цепной ядерной реакции.

Последнее подразумевает процесс деления тяжелых ядер или синтеза легких ядер. В результате чего, атомная бомба является оружием массового поражения, за счет того, что в кратчайший промежуток времени происходит выделение огромного количества внутриядерной энергии в небольшом пространстве. При том входе данного процесса принято выделять два ключевых места.

Первое, это центр ядерного взрыва, где непосредственно протекает данный процесс. И, второе, это эпицентр, который по своей сути представляет проекцию самого процесса на поверхность (землю или воду). Также ядерный взрыв высвобождает такое количество энергии, что при ее проекции на землю появляются сейсмический толчки. И дальность распространения подобных колебаний невероятно велика, хотя ощутимый урон окружающей среде они наносят лишь на расстоянии всего нескольких сотен метров.

Далее стоит отметить, что ядерный взрыв сопровождается и высвобождением большого количества тепла и света, которые и образует яркую вспышку. Причем по своей мощности она превышает во множество раз мощность лучей солнца. Таким образом, поражение светом и теплом можно получить на расстоянии даже нескольких километров.

Но одним высоко опасным типом поражения атомной бомбы является радиация, которая образуется при ядерном взрыве. Длительность воздействия этого явления невысока, и составляет в среднем 60 секунд, вот только проникающая способность этой волны поражает.

Что касается устройства атомной бомбы, то она включает в себя целый ряд различных компонентов. Как правило, выделяют два основных элемента данного типа оружия: корпус и систему автоматики.

В корпусе находится ядерный заряд и автоматика, и именно он выполняют защитную функцию по отношению к различным видам воздействия (механического, теплового и так далее). А роль системы автоматики заключается в том, чтобы взрыв произошел в четко заданное время, а не раньше или позже. Состоит система автоматики из таких систем как: аварийный подрыв; предохранения и взведения; источник питания; датчики подрыва и подрыва заряда.

А вот доставляются атомные бомбы с помощью баллистических, крылатых и зенитных ракет. Т.е. ядерные боеприпасы могут являться элементом авиабомбы, торпеда, фугаса и так далее.

И даже системы детонирования для атомной бомбы могут быть разными. Одной из наиболее простых систем является инжекторная, когда толчком для ядерного взрыва становится попадания снаряда в цель, с последующим образованием сверхкритической массы. Именно к такому типу атомных бомб относилась первая взорванная бомба над Хиросимой в 1945 году, содержащая уран. В отличие от нее, бомба, сброшенная на Нагасаки в том же году, была плутониевая.

После такой яркой демонстрации мощности и силы атомного оружия, оно моментально попало в разряд самого опасного средства массового поражения. Говоря о типах атомного оружия, следует упомянуть, что они определяются размером калибра. Так, в настоящий момент выделяют три основных калибра для данного оружия, это малый, крупный и средний. Мощность взрыва, чаще всего, характеризуют тротиловым эквивалентом. Так, например, малый калибр атомного оружия подразумевает мощность заряда, равной нескольким тысячам тонн тротила. А более мощное атомное оружие, точнее средний калибр, составляет уже десятки тысяч тонн тротила, и, наконец, последний уже измеряется в миллионах. Но при этом не стоит путать понятие атомного и водородного оружия, которое в целом и называют ядерным оружием. Основное отличие атомного оружия от водородного, это реакция деления ядер ряда тяжелых элементов, таких как плутоний и уран. А водородное оружие подразумевает процесс синтеза ядер атомов одного элемента в другой, т.е. гелия из водорода.

Первое испытание атомной бомбы

Первое испытание атомного оружия было проведено американскими вооруженными силами 16 июля 1945 года в местечке под названием Алмогордо, показавшее всю мощь атомной энергии. После чего, атомные бомбы, имеющиеся у сил США, были погружены на военный корабль и отправлены к берегам Японии. Отказ правительства Японии от мирного диалога позволил в действии показать всю мощь атомного оружия, жертвами которого сначала стал город Хиросима, а чуть позднее Нагасаки. Так, 6 августа 1945 года впервые атомное оружие было применено на мирных жителях, в результате чего город практически был стерт в лица земли ударными волнами. Больше половины жителей города погибли впервые дни атомной атаки, и составило в общем, около двухсот сорока тысяч человек. А спустя всего четыре дня, военную базу США покинули сразу два самолета с опасным грузом на борту, целями которых были Кокура и Нагасаки. И если Кокура, охваченная непроглядным дымом представляла собой трудную цель, то в Нагасаки цель была поражена. В конечном счете, от атомной бомбы в Нагасаки в первые дни погибло 73 тысячи человека от полученных повреждений и облучения к этим жертвам добавился список уже в тридцать пять тысяч человек. При этом смерть последних жертв была довольно мучительной, так как действие радиации невероятно губительно.

Факторы поражения атомного оружия

Таким образом, атомное оружие имеет несколько типов поражения; светового, радиоактивного, ударная волна, проникающая радиация и электромагнитный импульс. При образовании светового излучения после взрыва ядерного оружия, которое позднее превращается в губительное тепло. Далее наступает очередь радиоактивного заражения, которое опасно лишь впервые часы после взрыва. Ударную волну принято считать наиболее опасным этапом ядерного взрыва, ведь она в считанные секунды наносит огромный вред различным строениям, техники и людям. А вот проникающая радиация очень опасна для человеческого организма, и нередко становится причиной лучевой болезни. Электромагнитный импульс поражает технику. В совокупности все это и делает очень опасным атомное оружие.

Тот, кто изобрёл атомную бомбу, даже не представлял себе, к каким трагическим последствиям может привести это чудо-изобретение XX столетия. Перед тем как это супероружие испытали на себе жители японских городов Хиросима и Нагасаки, был проделан очень долгий путь.

Начало положено

В апреле 1903 года в Парижском саду Франции Поля Ланжевена собрались его друзья. Поводом стала защита диссертации молодой и талантливой учёной Марии Кюри. Среди именитых гостей присутствовал знаменитый английский физик сэр Эрнест Резерфорд. В самый разгар веселья был потушен свет. объявила всем, что сейчас будет сюрприз. С торжественным видом Пьер Кюри внёс небольшую трубочку с солями радия, которая светила зелёным светом, вызывая необычайный восторг у присутствующих. В дальнейшем гости жарко рассуждали об будущем этого явления. Все сходились во мнении, что благодаря радию решится острая проблема нехватки энергии. Это всех вдохновляло на новые исследования и дальнейшие перспективы. Если бы тогда им сказали, что лабораторные работы с радиоактивными элементами положат начало страшному оружию XX века, неизвестно, какова бы была их реакция. Именно тогда началась история атомной бомбы, унесшей жизни сотни тысяч японских мирных жителей.

Игра на опережение

17 декабря 1938 года немецким учёным Отто Ганном было получено неопровержимое доказательство распада урана на более мелкие элементарные частицы. По сути, ему удалось расщепить атом. В научном мире это расценивалось как новая веха в истории человечества. Отто Ганн не разделял политические взгляды третьего Рейха. Поэтому в том же, 1938 году, учёный был вынужден переехать в Стокгольм, где совместно с Фридрихом Штрассманом продолжил свои научные изыскания. Опасаясь, что фашистская Германия первой получит страшное оружие, он пишет письмо с предупреждением об этом. Известие о возможном опережении сильно встревожило правительство США. Американцы стали действовать быстро и решительно.

Кто создал атомную бомбу? Американский проект

Ещё до группе многие из которых были беженцами от немецко-фашистского режима в Европе, была поручена разработка ядерного оружия. Первоначальные исследования, стоит заметить, проводились в нацистской Германии. В 1940 году правительство Соединённых Штатов Америки начало финансирование собственной программы по развитию атомного оружия. Для осуществления проекта была выделена невероятная по тем временам сумма в два с половиной миллиарда долларов. К осуществлению этого секретного проекта были приглашены выдающиеся физики XX века, среди которых было более десяти Нобелевских лауреатов. Всего же было задействовано около 130 тысяч сотрудников, среди которых были не только военные, но и гражданские лица. Коллектив разработчиков возглавил полковник Лесли Ричард Гровс, научным руководителем стал Роберт Оппенгеймер. Именно он - тот человек, кто изобрёл атомную бомбу. В районе Манхэттена был построен специальный секретный инженерный корпус, который известен нам под кодовым названием «Манхэттенский проект». В течение последующих нескольких лет учёные секретного проекта работали над проблемой ядерного расщепления урана и плутония.

Немирный атом Игоря Курчатова

Сегодня каждый школьник сможет ответить на вопрос о том, кто изобрёл атомную бомбу в Советском Союзе. А тогда, в начале 30-х годов прошлого столетия, этого не знал никто.

В 1932 году академик Игорь Васильевич Курчатов одним из первых в мире начинает изучение атомного ядра. Собрав вокруг себя единомышленников, Игорь Васильевич в 1937 году создаёт первый в Европе циклотрон. В этом же году он со своими единомышленниками создаёт и первые искусственные ядра.

В 1939 году И. В. Курчатов начинает изучение нового направления - ядерной физики. После нескольких лабораторных успехов в изучении этого явления учёный получает в своё распоряжение засекреченный исследовательский центр, который был назван "Лаборатория № 2". В наши дни этот засекреченный объект называется "Арзамас-16".

Целевым направлением этого центра было серьёзное исследование и создание ядерного оружия. Теперь становится очевидным, кто создал атомную бомбу в Советском Союзе. В его команде тогда было всего лишь десять человек.

Атомной бомбе быть

Уже к концу 1945 года Игорю Васильевичу Курчатову удаётся собрать серьёзную команду учёных численностью более ста человек. Лучшие умы разных научных специализаций приехали в лабораторию со всех концов страны для создания атомного оружия. После сбрасывания американцами атомной бомбы на Хиросиму советские учёные понимали, что это можно сделать и с Советским Союзом. "Лаборатория № 2" получает от руководства страны резкое увеличение финансирования и большой приток квалифицированных кадров. Ответственным за столь важный проект назначается Лаврентий Павлович Берия. Огромные труды советских учёных дали свои плоды.

Семипалатинский полигон

Атомная бомба в СССР впервые была испытана на полигоне в Семипалатинске (Казахстан). 29 августа 1949 года ядерное устройство мощностью 22 килотонны сотрясло казахскую землю. Нобелевский лауреат, физик Отто Ханц, сказал: «Это хорошие вести. Если Россия будет иметь атомное оружие, тогда не будет войны». Именно эта атомная бомба в СССР, зашифрованная как изделие № 501, или РДС-1, ликвидировала монополию США на ядерное оружие.

Атомная бомба. Год 1945-й

Ранним утром 16 июля «Манхэттенский проект» провел свое первое успешное испытание атомного устройства - плутониевой бомбы - на полигоне Аламогордо штат Нью-Мексико США.

Деньги, вложенные в проект, были потрачены не зря. Первый в истории человечества был произведён в 5 часов 30 минут утра.

«Мы проделали работу дьявола»,- скажет позднее - тот, кто изобрёл атомную бомбу в США, названный впоследствии «отцом атомной бомбы».

Япония не капитулирует

К моменту окончательного и успешного тестирования атомной бомбы советские войска и союзники окончательно разгромили фашистскую Германию. Однако оставалось одно государство, которое пообещало бороться до конца за господство в Тихом океане. С середины апреля по середину июля 1945 года японская армия неоднократно осуществляла авиационные удары по союзническим войскам, тем самым нанося большие потери армии США. В конце июля 1945 года милитаристское правительство Японии отклонило требование союзников о капитуляции согласно Потсдамской декларации. В ней, в частности, говорилось, что в случае неповиновения японскую армию ждёт быстрое и полное уничтожение.

Президент соглашается

Американское правительство сдержало своё слово и начало целенаправленную бомбардировку японских военных позиций. Авиационные удары не приносили желаемого результата, и президент США Гарри Трумэн принимает решение о вторжении американских войск на территорию Японии. Однако военное командование отговаривает своего президента от такого решения, мотивируя это тем, что вторжение американцев повлечёт за собой большое количество жертв.

По предложению Генри Льюиса Стимсона и Дуайта Дэвида Эйзенхауэра было решено применить более эффективный способ окончания войны. Большой сторонник атомной бомбы, секретарь президента США Джеймс Фрэнсис Бирнс, считал, что бомбардировка японских территорий окончательно прекратит войну и поставит США в доминирующее положение, что положительно скажется в дальнейшем ходе событий послевоенного мира. Таким образом, президента США Гарри Трумэна убедили, что это единственно правильный вариант.

Атомная бомба. Хиросима

В качестве первой мишени был выбран небольшой японский город Хиросима с населением чуть более 350 тысяч человек, находящийся в пятистах милях от столицы Японии Токио. После прибытия на военно-морскую базу США на острове Тиниан модифицированного бомбардировщика В-29 «Энола Гей», на борт самолёта была установлена атомная бомба. Хиросима должна была испытать на себе действие 9 тысяч фунтов урана-235.

Это невиданное до сих пор оружие было предназначено для мирных жителей маленького японского городка. Командиром бомбардировщика был полковник Пол Уорфилд Тиббетс-младший. Атомная бомба США носила циничное название «Малыш». Утром 6 августа 1945 года, примерно в 8 часов 15 минут, американский «Малыш» был сброшен на японскую Хиросиму. Около 15 тысяч тонн тротила уничтожило всё живое в радиусе пяти квадратных миль. Сто сорок тысяч жителей города погибли в считанные секунды. Оставшиеся в живых японцы умирали мучительной смертью от лучевой болезни.

Их уничтожил американский атомный «Малыш». Однако опустошение Хиросимы не вызвало немедленной капитуляции Японии, как этого все ожидали. Тогда было принято решение о ещё одной бомбардировке японской территории.

Нагасаки. Небо в огне

Американская атомная бомба «Толстяк» была установлена на борт самолёта В-29 9 августа 1945 года всё там же, на военно-морской базе США в Тиниане. На этот раз командиром воздушного судна был майор Чарльз Суини. Первоначально стратегической мишенью был город Кокура.

Однако погодные условия не позволили осуществить задуманное, мешала большая облачность. Чарльз Суини зашёл на второй круг. В 11 часов 02 минуты американский атомный «Толстяк» поглотил Нагасаки. Это был более мощный разрушающий авиационный удар, который по своей силе, в несколько раз превышал бомбардировку в Хиросиме. Нагасаки испытал на себе атомное оружие весом около 10 тысяч фунтов и 22 килотонны тротила.

Географическое расположение японского города уменьшило ожидаемый эффект. Всё дело в том, что город находится в узкой долине между гор. Поэтому разрушения в 2,6 квадратные мили не раскрыли весь возможный потенциал американского оружия. Испытание атомной бомбы в Нагасаки считается неудавшимся «Манхэттенским проектом».

Япония сдалась

В полдень 15 августа 1945 года император Хирохито объявил о капитуляции своей страны в радиообращении к жителям Японии. Эта новость быстро разлетелась по миру. В Соединённых Штатах Америки начались торжества по случаю победы над Японией. Народ ликовал.

2 сентября 1945 года на борту американского линкора «Миссури», стоящего на якоре в Токийском заливе, было подписано официальное соглашение о прекращении войны. Таким образом закончилась самая жестокая и кровопролитная война в истории человечества.

Долгих шесть лет мировое сообщество шло к этой знаменательной дате - с 1 сентября 1939 года, когда прозвучали первые выстрелы нацистской Германии на территории Польши.

Мирный атом

Всего в Советском Союзе было проведено 124 ядерных взрыва. Характерным является то, что все они были осуществлены на благо народного хозяйства. Только лишь три из них были авариями, повлекших за собой утечку радиоактивных элементов. Программы по применению мирного атома реализовывались только лишь в двух странах - США и Советском Союзе. Атомная мирная энергетика знает и пример глобальнейшей катастрофы, когда года на четвёртом энергоблоке Чернобыльской АЭС произошёл взрыв реактора.


Top