Что такое карбид и где его продают. Карбид: что это такое

что такое карбид и соли карбида

  1. а если его принять внутрь, что будет???
  2. Карбиды - соединения элементов с углеродом. Солей карбида быть не может.
  3. Карбид является широко используемым механической обработке сплава, его наиболее эффективно, имеет высокие твердость и износостойкость. Из конституции, карбид представляет собой один или более тугоплавкие карбиды, такие как порошок из карбида вольфрама, карбида титана в качестве основного компонента, добавляют в качестве связующего вещества металлические порошки, такие как кобальт, никель и тому подобное, с помощью порошка металлургический сделал изготовлен из материала сплава. Как правило, используется в производстве твердосплавных режущих инструментов, пресс-форм и холодных частей высокой степени износа. http://www.btcarbide.com/news-events-page14/
  4. СОЛЕЙ КАРБИДА НЕ СУЩЕСТВУЕТ! ДАЖЕ НАЗВАНИЯ ТАКОГО НЕТ!
    Карбиды - соединения углерода с различными элементами. Чаще всего имеют нестехиометрический состав. При спекании окиси кальция с углеродом образуется карбид кальция CaC2 (техническое название просто карбид) . В воде происходит необратимый гидролиз карбида кальция с образованием ацетилена:
    СаС2+2Н2О=Са (ОН) 2+С2Н2
    Ацетилен благодаря наличию тройной связи ведт себя как слабая С-Н кислота и может замещать свои водороды на атомы металлов, образуя ацетилениды. Ацетилениды тяжлых металлов - очень взрывчатые соединения! Взрываются с громадной силой от малейшего касания.
    Карбид обычно используют для маленьких взрывов. Берут бутылку из-под шампанского. Наливают в не воды до половины, верху на воду бросают солому, затем небольшую бумажку, на которую насыпают карбид. Бутылку закупоривают и бросают. Та взрывается, не долетая до земли, осыпая всех, кто поблизости, стеклянными осколками, несущимися с громадной скоростью.
    Интереснее получать ацетилениды тяжлых металлов - серебра и меди. Для этого берут какую-то растворимую соль серебра или меди (медный купорос, например) , соответственно растворяют е в воде и доливают концентрированный раствор аммиака (25%) до растворения осадка. Через это вс пропускают ацетилен, полученный гидролизом карбида (карбид в воду, короче) . Выпадает осадок, который фильтруют на фильтровальной бумажке (промокашке) . Этот осадок и во влажном состоянии - то взрывчатый, а если ему дать высохнуть, то взрывается от малейшего касания. Но если не хотите остаться без глаз, то НИ В КОЕМ СЛУЧАЕ НЕ ДЕЛАЙТЕ ЭТОГО!! ! Я химик и часто сталкиваюсь со случаями, когда людям и по большей мелочи отрывало пальцы, руки или те слепли.
  5. Это такое вещество, получаемое спеканием каменного угля с известью, а может мелом. Образуется карбид кальция, очень не стойкое соединение, а в воде подвергается полному гидролизу с образованием ацителена. Применяется именно для его генерации в специальных генераторах для газосварочных работ. Дети его крадут со строек и используют для баловства: всякие пиро проделки. Про соли ацителена ничего не слышал.
  6. карбиды- это соединения металлов и неметаллов. кроме карбида кальция который реагирует с водой с образованием ацетилена-существует также карбид алюминия-который разлагается в воде с образованием метана- горючего газа. существует также карбид кремния-очень твердое вещество. используется как абразив. солей у карбидов нет. вот еще про карбиды-

Забава детства. Так многие вспоминают о карбиде, особенно бывшие мальчишки, а ныне, конечно, взрослые мужчины.

Они брали камешки на строительных рынках. Покупать не покупали, а так, таскали с развалов и из кузовов грузовиков.

Добычу клали в , заливали водой, закрывали, встряхивали. Оставалось кинуть тару и полюбоваться взрывом.

Любовались и белесыми пузырями, которые карбид давал, попадая в лужи. Однако, кому обязаны таким весельем, сорванцы прошлых лет, зачастую не знали.

Что такое карбид ? Попробуем ответить на вопрос, кажущийся неважным в детстве.

Что такое карбид

Карбит – не конкретное вещество, а группа соединений элементов с углеродом. Последний должен быть более электроотрицательным, чем «сосед».

Это обязательное условие, исключающее из ряда карбидов галогениды и оксиды углерода.

Под электроотрицательностью понимается способность атома сдвигать к себе электроны других веществ.

Электротрицательность углерода равна 2,6. Это данные Полинга. Она выстроена с учетом, что ионность в ковалентной связи делает эту связь прочнее.

Получается, электротрицательность вторых элементов в карбидах должна быть меньше 2,6.

Большинство подходящих элементов – металлы. Но, около 15% карбидов их не содержат.

Внешне карбиды – кристаллические, как правило, бесцветные, прозрачные вещества. Блеск у них .

Им соединения обязаны углероду, который является основой не только карбидов, но и .

По сути, герои являются , в которых часть атомов замещена другими элементами.

Есть и цветные дуэты с углеродом, к примеру, карбид железа . Это всем знакомый цемент. Окрас у соединения серый.

Получается, свойства карбидов могут разниться. Несовпадения рассмотрим в главе «Виды». Пока же, изучим общие характеристики класса соединений.

Свойства карбида

К общим свойствам карбидов относится . Она может быть больше, или меньше, но всегда выше среднего.

У некоторых представителей группы показатель близок к и . Это самые минералы на земле.

Особенно отличились карбиды переходных металлов. Это элементы побочных подгрупп периодической системы. У всех переходных металлов есть электроны на d- и f-орбиталях.

Обобщает карбиды и высокая температура плавления. Как правило, она выше, чем у входящего в соединение металла.

Если он из переходных, размягчение может начинаться лишь при 3000 градусов Цельсия.

Интересно, что температура плавления поднимается вместе с номером группы, к коей принадлежит «сосед» углерода.

Наиболее тугоплавкими являются карбиды с элементами из 5-7-ой групп .

Где карбид можно понять по структуре соединений. Их решетки, зачастую, дефектны.

Это значит, есть отклонения от теоретической схемы, разрывы и смещения. Именно поэтому свойства карбидов могут в 100, а то и 1000 раз разниться с высчитанными по формулам.

Так, многие соединения класса устойчивы к коррозии и не растворяются в большинстве .

Виды карбидов

Основных видов карбидов три. Первый – ковалентные соединения. Валентность – предрасположенность к определенному числу химических связей.

Ковалентная связь – это перекрытие валентных облаков разных элементов. То есть, у них образуются общие электронные пары. Именно такие лежат в основе ковалентных карбидов.

К ковалентным относятся карбиды лишь двух элементов: брома и . Оба соединения химически инертны. Их межатомные связи прочны.

В итоге, карбиды группы трудно расплавить, — решетка не хочет рушиться. Прочность связи делает оба соединения твердыми.

Карбид брома даже соперничает с . Некоторые образцы углеродного соединения царапают бриллианты, то есть, тверже них.

Карбид кремния алмаз не «побеждает», но свои достойные 8 баллов по имеет.

Растворяют ковалентные карбиды лишь плавиковая , концентрированная азотная и . Окисление карбидов группы происходит лишь при нагреве до 1000 градусов.

Второй вид карбидов – ионный. Его, так же, именуют солеобразным. Все образованны металлами 1-ой и 2-ой групп таблицы Менделеева.

В класс включен и карбид алюминия . Соединения группы разлагаются не только кислотами, но и водой.

Камешки, заставляющие «закипать» лужи, к примеру, — карбид кальция . Он, кстати, довольно токсичен, может разъесть слизистые. Зачем же его завозят на строительные , поймем в следующей главе.

При реакции ионных карбидов с водой выделяется водород. В жидкости формируется и выпадает в осадок гидроксид металла.

Реакция протекает бурно. Резкий выброс на поверхность воды водорода и дает то самое пузырение.

Третий вид карбидов – ионно-ковалентно-металлические, попросту, металлоподобные.

Такие соединения формируются элементами 4-ой, 5-ой, 6-ой, 7-ой групп периодической системы. Исключения: — карбиды никеля, кобальта и железа.

Если у ковалентных карбидов химическая активность низкая, а у ионных – высокая, то у третьего вида соединений она средняя.

Примечательно строение молекул. Их основа – атомы металла. Атомы же углерода находятся в пустотах между ними.

Поэтому, к примеру, карбид вольфрама называют внедренным. Имеется в виду, что углерод внедрился в кристаллическую решетку металла.

Такое строение обеспечивает рекордную прочность и высокую температуру плавления. Еще одно известное соединение группы – карбид титана .

Применение карбида

Карбид титана стал основой безвольфрамовых, но столь же твердых сплавов.

К тому же, соединение служит покрытием инструментария, в основном, промышленного и строительного.

Такое напыление сводит к минимуму износ деталей и позволяет обрабатывать ими даже самые материалы.

Карбид кремния, так же, используют в качестве абразива. В природном виде, коим является минерал муассанит, соединение цениться , причем, выше чем близкий по виду и свойствам .

Карбид кальция нужен при сварочных работах. Из соединения получают ацетилен. Карбид служит его источником, а заодно, и топливом для машин кислородной сварки.

Ацетилен – газ. Одного его достаточно для работы аппаратов. Но, есть еще и вода. Карбид кальция вступает с ней в бурную реакцию.

Итог – не только пузырьки, нравящиеся детям, но и обилие тепла – еще одного источника энергии.

Карбид бора применяют в качестве огнеупора. Температура плавления соединения составляет почти 2500 градусов.

Прочность карбида позволяет добавлять его в бронежилеты. Защитить материал способен не только от пуль, но и радиации.

Поэтому, один из ответов на вопрос, где взять карбид бора, — в защитных экранах, задерживающих излучение.

Список карбидов и их роли в жизни общества может занять многие страницы. Соединений несколько десятков и у каждого из них есть применение, причем, не одно. Нет и единственной схемы получения карбидов.

Придется ограничиться общими фразами. Однако, и в них есть толика полезной информации.

Получение карбидов

Большинство карбидов именно получают, а не добывают. Первый синтез проведен в начале 19-го столетия.

Англичанин по фамилии Дэви получил карбид калия . В 1863-ем создали карбид .

Он оказался неустойчивым, в отличие от третьего синтезированного соединения углерода с железом. Масса карбида может получиться, к примеру, из древесного и оксидов металлов.

Они преобразуются в карбиды при помощи вольтовой дуги и электрической .

Цена карбида

Карбид кальция купить предлагают примерно за 40-90 рублей за килограмм. Соединение углерода с бором стоит от 100-та за кило.

Купить карбид кремния предлагают примерно по 160 рублей за 1000 граммов.

А вот за кило карбида гафния придется выложить около 21 000 рублей, причем, при оптовых закупках.

То есть, стоимость материала во многом зависит от присутствующего в нем металла, или неметалла. Существует даже карбид золота .

Он, кстати, способен взорваться при простом пересыпании порошка. Так что, даже за большую цену, доставить сырье потребителю – задача не из легких.

Газовая сварка выполняется посредством использования горючих газов, главное место среди которых занимает ацетилен. Газ, смешиваясь с кислородом, выдает наивысшую температуру сварочного пламени - до 3200 градусов. Его получают в заводских условиях и, упакованным в специальные баллоны, доставляют к месту проведения сварочных работ. Другой способ добычи ацетилена - использовать генератор, который производит газ непосредственно там, где нужна сварка. Главный компонент для работы генератора - это карбид.

Материал представляет собой вещество темно-серого или коричневатого оттенка с химической формулой СаС2. Взаимодействуя с водой он делится на ацетилен и гашеную известь. По теоретическим расчетам из одного килограмма чистого карбида кальция можно добыть 370 дм³ газа, но в реальности сказывается присутствие примесей, и результат получается несколько иной - всего около 280 дм³.

Кроме того, фактический выход ацетилена зависит от размера кусков карбида, его однородности. На продолжительность реакции влияет степень грануляции карбида и температура распада. Процесс гидролиза карбида кальция выглядит следующим образом: СаС2 + Н2О = С2Н2 + Са(ОН). Фактическая потребность в воде на 1 кг сухого вещества колеблется в пределах от 5 до 20дм³.

Производство карбида

Что такое карбид кальция? Это продукт, получаемый в результате термической реакции окиси кальция и кокса. Основным сырьем для его производства служат известняки, к которым предъявляются особые требования. Сырье должно быть однородным, поэтому карбидные предприятия обычно работают на известняках из хорошо изученных месторождений. Технологический процесс складывается из нескольких этапов:

  • обжиг известняка в специальных печах;
  • приготовление шихты;
  • получение карбидного сплава;
  • дробление и разделение на фракции конечного продукта.

Сам материал и его производство относится к разряду взрыво- и огнеопасных. Поэтому государственными нормативами предусмотрено строжайшее выполнение правил безопасного хранения и обращения с карбидом кальция. Основные требования таковы:

  • карбид кальция поступает в продажу упакованным в стальные герметично закрытые барабаны или контейнеры;
  • помещение для хранения строится из негорючих материалов; должно быть сухим, закрытым, исключающим попадание влаги, иметь возможность проветривания;
  • в хранилище не допускается наличие водопровода, канализации, водяного отопления;
  • уровень поверхности пола необходимо делать выше нулевой отметки не менее, чем на 20 см;
  • вскрывать барабан разрешается только ручным способом (молоток, зубило) или специальным режущим инструментом (не электрическим);
  • единовременно открытым может быть только один барабан;
  • в случае неполного использования емкость закрывают временной водонепроницаемой крышкой;
  • обязательное наличие средств противопожарной защиты и малой механизации для перемещения продукта.

Емкости с карбидом кальция можно складировать и в горизонтальном, и в вертикальном положении. Свободную тару необходимо хранить в специально отведенных местах.

Процесс получения ацетилена из карбида

Устройство для получения ацетилена из карбида кальция называется ацетиленовый генератор. Оборудование бывает передвижным и стационарным. Мобильные генераторы используются, в основном, при проведении ремонтных работ, стационарные - на объектах с большими объемами сварочных процессов. Как получают ацетилен из карбида кальция? Принцип работы генератора состоит в следующем:

  • Камера, предназначенная для газообразования, заполняется водой в расчетном объеме.
  • Необходимое количество карбида кальция загружается в газообразующую камеру через специальный бункер. Запрещается использовать карбидную пыль, поскольку она может привести к мгновенному выделению газа и разгерметизации аппарата.
  • Подача карбида для сварки из бункера в камеру происходит порциями в автоматическом режиме.
  • По мере подачи каждой порции давление внутри камеры возрастает. Его снижение служит командой для загрузки последующей части карбида.
  • В процессе взаимодействия карбида кальция с водой и происходит выделение ацетилена, который через отборник подается в шланг, ведущий к сварочной горелке.

Вторичный продукт в виде гашеной извести удаляется из генератора при помощи специального бункера. При работе с ацетиленовым генератором надо помнить, что в непосредственной близости от него категорически нельзя курить и пользоваться электрическими инструментами. Газовая горелка должна находиться не ближе 10 метров. Именно такого размера должна быть минимальная длина сварочного шланга.

Если возникла потребность в сварочных работах и нужно решить, где взять карбид, то надежнее всего обратиться к прямым поставщикам или купить в интернет магазинах, которые организуют доставку транспортной компанией.

КАРБИДЫ (от латинского carbo – уголь) – соединения углерода с металлами, а также с бором и кремнием. Эти соединения обладают удивительным разнообразием физических и химических свойств. Так, карбид золота Au 2 C 2 взрывается уже при попытке пересыпать его с листочка фильтровальной бумаги, на котором он был высушен. С другой стороны, карбиды некоторых элементов (например, бора и тантала) не разлагаются даже при температуре белого каления и настолько химически инертны, что на них не действует царская водка, а по твердости они приближаются к алмазу!

Впервые необычное соединение металла с углеродом (К 2 С 2) получил в 1809 знаменитый английский химик Гемфри Дэви . В 1863 французский химик Марселен Бертло изучил свойства другого карбида – очень неустойчивого и легко взрывающегося карбида одновалентной меди Cu 2 C 2 . В 1878 немецкий металлург Ф.Мюллер, растворив образцы стали в разбавленной серной кислоте, выделил карбид железа Fe 3 C. Но только в конце 19 в. французский химик Анри Муассан, прославившийся получением фтора, синтезировал многие из этих необычных соединений и изучил их свойства. Он получал карбиды, нагревая до очень высокой температуры смеси древесного угля с разными металлами, их оксидами или карбонатами. Для этого он использовал жар вольтовой дуги в электрической печи собственной конструкции.

Карбиды, как оказалось, можно получить не только в лаборатории. Еще до работ Муассана австрийский ученый Э.Вайнсхенк в 1889 открыл в метеоритах минерал когенит, представляющий собой смешанный карбид железа, кобальта и никеля состава (FeNiCo) 3 C. А сам Муассан в 1904 обнаружил в метеорите, привезенном из каньона Диабло в штате Аризона, темно-зеленый минерал, представляющий собой карбид кремния SiC. Этот минерал в честь ученого назвали муассанитом.

Раньше карбиды классифицировали по их устойчивости к действию воды и кислот, а также по тому, какие газы выделяются при их разложении. Современная классификация учитывает тип химической связи между атомами в карбидах – именно от этого зависят в основном физические и химические свойства. В соответствии с этой классификацией, карбиды можно разделить на три группы, которые довольно сильно отличаются по своим свойствам.

К первой группе относятся так называемые солеобразные карбиды с ионной связью. Эти карбиды образуют щелочные и щелочноземельные металлы, алюминий, редкоземельные элементы, а также актиноиды. Их состав иногда соответствует типичным валентностям металлов (Al 4 C 3), а иногда – нет (Ве 2 С). Многие ионные карбиды можно получить непосредственно из элементов (Са + 2С ® СаС 2) или восстановлением оксидов углеродом (СаО + 3С ® СаС 2 + СО). Ионный характер связи приводит к высокой температуре плавления; например, карбид кальция СаС 2 плавится при 2300° С, карбид тория ThC 2 – при 2655° С. Водой или разбавленными кислотами ионные карбиды легко разлагаются – гидролизуются. При этом образуются различные углеводороды и гидроксид металла. Самый известный пример – получение ацетиленагидролизом карбида кальция: СаС 2 + 2Н 2 О ® Ca(OH) 2 + С 2 Н 2 . Ацетилен выделяется также при гидролизе Na 2 C 2 , К 2 С 2 и др. Поэтому такие карбиды можно рассматривать как производные ацетилена, в которых атомы водорода замещены атомами металла. При этом катионы металла и анионы С 2 –2 размещаются в соответствующих узлах кристаллической решетки. Солеобразный характер этих карбидов подтверждается возможностью их электролиза в расплавленном состоянии. Интересно отметить, что чистый карбид кальция – бесцветные кристаллы, хотя увидеть их непросто, так как обычный технический продукт имеет цвет от бурого до черного.

Взаимодействие карбидов щелочных металлов с водой протекает исключительно бурно. Так, если карбид калия просто облить водой, произойдет бурная реакция, которая сопровождается взрывом такой силы, что выделяющийся ацетилен сразу же разлагается с выделением угля. Чтобы провести реакцию К 2 С 2 + 2Н 2 О ® 2КОН + С 2 Н 2 , надо медленно пропускать над карбидом водяной пар.

В ряде случаев карбиды ионного типа образуются непосредственно при пропускании ацетилена через растворы солей металлов. Так карбиды серебра, меди(I), золота и ртути, которые чаще называют ацетиленидами. Ацетилениды щелочных металлов можно получить действием ацетилена на свободные металлы. В сухом виде ацетилениды тяжелых металлов легко разлагаются со взрывом. Гидролиз ионных карбидов других металлов показывает, что они «происходят» из других углеводородов. Например, при гидролизе карбида алюминия выделяется метан: Al 4 C 3 + 12H 2 O ® 4Al(OH) 3 + 3CH 4 (так же гидролизуется карбид бериллия Ве 2 С), а при гидролизе карбида магния получается метилацетилен: Mg 2 C 3 + 4H 2 O ® 2Mg(OH) 2 + НС≡С–СН 3 . Интересно, что карбид магния другого состава, MgC 2 , дает при гидролизе только ацетилен. Иногда при гидролизе ионных карбидов углеводороды выделяются совместно с водородом, который частично гидрирует непредельные углеводороды. С выделением почти равных количеств водорода и метана разлагается карбид марганца: Mn 3 C + 6H 2 O ® 3Mn(OH) 2 + CH 4 + H 2 . Карбиды редкоземельных металлов и тория при разложении разбавленными кислотами выделяют не чистый ацетилен, а его смесь с метаном, этиленом и другими углеводородами. Например, при гидролизе карбида церия СеС 2 получается смесь ацетилена с метаном в соотношении 4:1, а также немного этилена и жидких и твердых углеводородов (состав продуктов зависит от условий проведения реакции). Еще больше жидких и твердых углеводородов дает при гидролизе карбид урана.

Выделение углеводородов при гидролизе карбидов позволило Д.И.Менделееву выдвинуть так называемую карбидную теорию происхождения нефти в глубинах Земли из неорганических веществ. По представлению Менделеева, в глубинах земного шара должны быть расплавленные металлы, в основном железо, которое с углеродом дает карбид. Во время горообразования в земной коре образуются трещины, по которым в глубины проникает вода. Воздействуя на карбид железа и карбиды других металлов, вода (в виде пара) образует углеводороды, например: 2FeC + 3H 2 O ® Fe 2 O 3 + C 2 H 4 . Газообразные углеводороды по тем же трещинам поднимаются ближе к поверхности, где скапливаются в пористых пластах. Однако когда в 60-е гг. 20 в. был подробно изучен состав углеводородов нефти, оказалось, что смесь «искусственных углеводородов», образующихся при гидролизе карбидов, по своему составу резко отличается от природной смеси. Кроме того, все нефти, полученные неорганическим путем, оптически неактивны, тогда как природная нефть оптически активна. На основании этих, а также ряда других фактов неорганическая теория происхождения нефти была подвергнута критике, и в настоящее время многие ученые полагают, что нефть имеет биологическое происхождение.

Ко второй группе относятся карбиды, которые образуют переходные металлы IV–VII групп, а также кобальт, железо и никель. Это металлоподобные соединения с другой структурой. В них атомы углерода, имеющие небольшие размеры, не связаны друг с другом и располагаются в пустотах между атомами металлов. Различная упаковка атомов металла в кристаллической решетке приводит к разному составу карбидов даже для одного и того же металла; например, хром образует карбиды состава Cr 3 C 2 , Cr 4 C, Cr 7 C 3 и др. Эти карбиды (их называют карбидами внедрения) часто отличаются большой твердостью и очень высокими температурами плавления. Например, карбиды тантала и гафния TaC и HfC – наиболее тугоплавкие из известных веществ (плавятся при 3985 и 3890° С соответственно).

Металлоподобные карбиды обладают высокой электропроводностью и очень высокой химической стойкостью к агрессивным средам (многие из них не растворяются даже в царской водке). Они используются для упрочнения чугуна и стали (карбиды железа, хрома, вольфрама, молибдена), а также для производства очень твердых сплавов, которые применяют для обработки металлов резанием (карбиды WC, TiC, TaC, VC, Cr 3 C 2). Например, твердые наконечники резцов, сверл делают из победита – спеченного порошка карбида вольфрама WC с добавкой металлического кобальта. Очень важную роль играет карбид железа Fe 3 C (цементит) – твердые кристаллы, входящие в структуру чугуна и стали.

Карбид вольфрама WC используют также для изготовления буровых коронок, деталей аппаратуры для производства синтетических алмазов, для нанесения износостойких покрытий на поверхности металлов. Карбид титана интересен ярким проявлением нестехиометрии: состав этого соединения выражается формулой TiC х , где х колеблется в пределах от 0,49 до 1 (см . СТЕХИОМЕТРИЯ). Это вещество, как и карбид вольфрама, используют как компонент жаропрочных, жаростойких и твердых сплавов, для получения износостойких покрытий, для изготовления тугоплавких тиглей, в которых можно плавить почти любые металлы (сам карбид плавится при 3257° С). Карбидом титана выкладывают внутренние стенки высокотемпературных печей.

К третьей группе относятся ковалентные карбиды. Их образуют кремний и бор – соседи углерода по периодической таблице, близкие к нему как по размеру атомов, так и по электроотрицательности. Карбид кремния SiC (техническое название – карборунд) в чистом виде – бесцветные кристаллы, но примеси часто окрашивают его в различные цвета, вплоть до черного. По своей структуре это соединение аналогично алмазу; решетку карбида кремния можно получить, если в немного расширенной решетке алмаза заменить половину атомов углерода на атомы кремния. Это вещество обладает очень высокой твердостью; помимо этого оно имеет свойства полупроводника. Из него делают шлифовальные бруски и круги, огнеупорные материалы для печей и литейных машин, нагревательные элементы для электропечей, полупроводниковые диоды.

Бор образует по два карбида с точно известной структурой – В 4 С и В 13 С 2 . Наибольшее значение имеет первый из них – черные блестящие кристаллы, которые по твердости уступают лишь алмазу и нитриду бора BN. Этот карбид применяют для изготовления абразивных и шлифовальных материалов и в качестве полупроводника. Карбид, обогащенный изотопом 10 В, используется как поглотитель нейтронов в ядерных реакторах.

Илья Леенсон

Карбиды - это группа неорганических соединений углерода с металлами, а также с кремнием или бором (поскольку эти элементы проявляют металлические свойства). Карбид кальция - одно из наиболее востребованных веществ этой группы. О свойствах и применении соединения читайте ниже.

История получения

Карбид кальция - соединение, получившее широкое применение в современной промышленности. В 1862 году немецкий химик Фридрих Велер впервые синтезировал молекулу этого вещества. Получение карбида кальция он осуществил следующим образом. Ученый приготовил расплав кальция с цинком, а затем нагрел его с углем. В результате получился карбид. Химическая формула соединения - CaC 2 . Промышленный способ получения карбида предложил ученый Муассан в 1892 году. Другие названия вещества - ацетиленид кальция, или углеродистый кальций. Кристаллическая решетка соединения выглядит следующим образом:

Физические свойства

По своим физическим свойствам карбид кальция является кристаллическим веществом с температурой плавления 2300 о С. Эта цифра является справедливой лишь для чистого соединения. Карбид, содержащий примеси, может иметь другие показатели температуры плавления. Основное агрегатное состояние вещества - твердое, а цвет варьирует от серого до коричневого.

Химические свойства

Карбид кальция хорошо впитывает воду. Этот процесс сопровождается химической реакцией разложения. Важно, что карбидная пыль обладает раздражающим действием на слизистые оболочки, кожу и органы дыхания. Поэтому во время работы с соединением необходимо использовать противогазы либо противопылевые респираторы. С кислородом карбид кальция взаимодействует при высокой температуре с образованием карбоната кальция. Реакция с азотом приводит к синтезу цианамида кальция. Также при высоких температурах карбид кальция вступает в реакции соединения с хлором, фосфором, мышьяком. Но все-таки одним из важнейших свойств соединения считается разложение водой.

Получение

Производство карбида кальция заключается в следующем. Негашеную известь и предварительно измельченный кокс смешивают. Полученную смесь подвергают расплавлению в электрических печах. Кокс и оксид кальция берутся в равных по массе частях. Процесс происходит при температуре 1900 о С. Расплав выходит из печи и в дальнейшем разливается по специальным формам. Затем уже затвердевший карбид кальция дробят и сортируют по размеру кусков. Гранулы вещества разделяются на четыре фракции в соответствии с их размерами: 25×80, 15×25, 8×15, 2×8, которые определяются ГОСТом 1460-56. По своему составу технический карбид кальция содержит 75-80% основного вещества. На долю примесей, таких, как углерод, известь и других, приходится до 25% от общей массы полученной смеси. Кроме того, содержащийся в техническом карбиде сульфид и фосфид кальция обусловливают довольно неприятный его запах. Представим реакцию получения СаС 2: СаО + 3С → СаС 2 + СО. Образование ацетиленида кальция сопровождается поглощением тепла. Поэтому логично предположить, что реакция его разложения, напротив, идет с выделением энергии.

Транспортировка и хранение

По причине того, что влага моментально разлагает карбид с выделением большого количества тепла и образованием взрывоопасного газа ацетилена, хранить вещество необходимо в герметично закупоренных барабанах или бидонах. Следует помнить, что ацетилен легче воздуха и способен скапливаться в верхних зонах помещения. Этот газ, помимо наркотического действия, обладает способностью к самовоспламенению. Поэтому использовать карбид кальция необходимо с большой осторожностью. Расфасовке на производстве уделяется особое внимание. Готовое вещество помещается в специальные барабаны (тара, напоминающая консервные банки). Такая упаковка требует аккуратного вскрытия. При этом должен использоваться инструмент, не приводящий к образованию искр (молоток или специальный нож). В случае попадания карбида на кожу или слизистые оболочки необходимо немедленно промыть пораженный участок водой и обработать место вазелином или жирным кремом. Транспортировка соединения осуществляется с использованием только крытых видов транспорта. Воздушная доставка карбида запрещена. Помещения, где хранится СаС 2 , должны быть хорошо проветриваемыми. Также не разрешается хранить карбид совместно с другими химическими веществами. Это может привести к нежелательным, а, возможно, и опасным, реакциям. Срок хранения карбида составляет полгода.

Применение

Область применения карбида кальция чрезвычайно широка. В первую очередь это промышленный синтез. Карбид кальция используется для производства синтетического каучука, уксусной кислоты, ацетона, этилена, винилхлорида, стирола. Также он находит применение в получении цианамида кальция. Это вещество ценно своим использованием в синтезе различных удобрений и цианистых веществ. В сельском хозяйстве любому агроному известно такое название, как карбидно-карбамидный регулятор. Он применяется для регуляции роста растений. А для его получения также используется карбид кальция. Кроме того, это соединение находит применение в процессе производства цианамида кальция. Эта реакция основана на нагревании карбида кальция с азотом. Восстановление щелочных металлов также не обходится без применения описываемого нами вещества. Карбид кальция применяется и в процессе газосварки. Например, широко используются карбидные лампы. Принцип их работы основан на взаимодействии в специальной емкости карбида с водой и сгорании на выходе из аппарата конечного вещества реакции - ацетилена. Посмотрите на фото карбидной лампы.

Производство ацетилена

Одной из важнейших областей применения карбида кальция является его использование в получении ацетилена. Заслуга в открытии этого способа также принадлежит немецкому ученому-химику Фридриху Велеру. В основе этого промышленного процесса лежит реакция разложения карбида под воздействием воды. СаС 2 + 2 Н 2 О → С 2 Н 2 + Са(ОН) 2 ↓. На выходе образуется газ ацетилен и гашеная известь, выпадающая в осадок. Процесс сопровождается выделением большого количества тепла. Объем газа на выходе зависит от того, насколько чистый используется для реакции карбид кальция. Ацетилен, образующийся в результате, может иметь различный объем - 1 кг исходного вещества может дать от 235 до 290 литров газа. Что касается скорости протекания реакции, то она зависит как от малого процента примесей в карбиде кальция, так и от температуры воды, а также ее чистоты. Если рассматривать теоретическую реакцию производства ацетилена из карбида, то в ней на 1 кг карбида достаточно 560 мл воды. Однако на практике объем воды для проведения реакции увеличивается. На 1 кг карбида кальция в условиях промышленного синтеза требуется от 5 до 20 литров воды. Такое количество необходимо для того, чтобы ацетилен лучше охлаждался, а также для обеспечения оптимальной безопасности при работе. Ниже изображен немецкий химик Фридрих Велер.

Лабораторный опыт получения ацетилена

Многим из школьных уроков химии знакома реакция взаимодействия карбида с водой. Обычно этот опыт позволяет продемонстрировать реакцию получения ацетилена, а также физические и химические его свойства. Процесс выделения газа при этом происходит достаточно бурно, поэтому трубка, отводящая ацетилен из колбы с действующими веществами, помещается в чашу с водой. Это обеспечивает менее активное и стремительное движение газа. Кроме того, в лабораторных условиях можно использовать и другой способ, чтобы сделать не слишком бурной реакцию разложения такого соединения, как карбид. Ацетилен при этом идет равномерно и спокойно. Для этого вместо воды необходимо взять насыщенный раствор поваренной соли. Также в лаборатории при проведении этой реакции следует осторожно добавлять воду в карбид, помещенный в объемную колбу, а не наоборот.


Top