Применение карбоновых кислот. Одноосновные непредельные карбоновые кислоты

Классификация

а) По основности (т. е. числукарбоксильных групп в молекуле):


Одноосновные (монокарбоновые) RCOOH; например:


СН 3 СН 2 СН 2 СООН;



НООС-СН 2 -СООН пропандиовая (малоновая) кислота



Трехосновные (трикарбоновые) R(COOH) 3 и т. д.


б) По строению углеводородного радикала:


Алифатические


предельные; например: СН 3 СН 2 СООН;


непредельные; например: СН 2 =СНСООН пропеновая(акриловая) кислота



Алициклические, например:



Ароматические, например:


Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу C n H 2n+1 COOH (n ≥ 0); или CnH 2n O 2 (n≥1)

Номенклатура

Систематические названия одноосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса - овая и слова кислота.


1. НСООН метановая (муравьиная) кислота


2. СН 3 СООН этановая (уксусная) кислота


3. СН 3 СН 2 СООН пропановая (пропионовая) кислота

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:




Межклассовая изомерия проявляется, начиная с уксусной кислоты:


CH 3 -COOH уксусная кислота;


H-COO-CH 3 метилформиат (метиловый эфир муравьиной кислоты);


HO-CH 2 -COH гидроксиэтаналь (гидроксиуксусный альдегид);


HO-CHO-CH 2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название

Название по ИЮПАК

Муравьиная кислота

Метановая кислота

Уксусная кислота

Этановая кислота

Пропионовая кислота

Пропановая кислота

Масляная кислота

Бутановая кислота

Валериановая кислота

Пентановая кислота

Капроновая кислота

Гексановая кислота

Энантовая кислота

Гептановая кислота

Каприловая кислота

Октановая кислота

Пеларгоновая кислота

Нонановая кислота

Каприновая кислота

Декановая кислота

Ундециловая кислота

Ундекановая кислота

Пальмитиновая кислота

Гексадекановая кислота

Стеариновая кислота

Октадекановая кислота

Кислотные остатки и кислотные радикалы

Кислотный остаток

Кислотный радикал (ацил)

НСООН
муравьиная


НСОО-
формиат


СН 3 СООН
уксусная

СН 3 СОО-
ацетат

СН 3 СН 2 СООН
пропионовая

СН 3 СН 2 СОО-
пропионат

СН 3 (СН 2) 2 СООН
масляная

СН 3 (СН 2) 2 СОО-
бутират

СН 3 (СН 2) 3 СООН
валериановая

СН 3 (СН 2) 3 СОО-
валериат

СН 3 (СН 2) 4 СООН
капроновая

СН 3 (СН 2) 4 СОО-
капронат

Электронное строение молекул карбоновых кислот


Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона - в водных растворах происходит процесс кислотной диссоциации:


RCOOH ↔ RCOO - + Н +


В карбоксилат-ионе (RCOO -) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:



В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

Физические свойства


Температуры кипения кислот значительно выше температур кипения спиртов и альдегидов с тем же числом атомов углерода, что объясняется образованием циклических и линейных ассоциатов между молекулами кислот за счет водородных связей:


Химические свойства

I. Кислотные свойства

Сила кислот уменьшается в ряду:


НСООН → СН 3 СООН → C 2 H 6 COOH → ...

1. Реакции нейтрализации

СН 3 СООН + КОН → СН 3 СООК + н 2 O

2. Реакции с основными оксидами

2HCOOH + СаО → (НСОО) 2 Са + Н 2 O

3. Реакции с металлами

2СН 3 СН 2 СООН + 2Na → 2СН 3 СН 2 COONa + H 2

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН 3 СООН + Na 2 CO 3 → 2CH 3 COONa + CO 2 + Н 2 O


2НСООН + Mg(HCO 3) 2 → (НСОО) 2 Мg + 2СO 2 + 2Н 2 O


(НСООН + НСО 3 - → НСОО - + СO2 +Н2O)

5. Реакции с аммиаком

СН 3 СООН + NH 3 → CH 3 COONH 4

II. Замещение группы -ОН

1. Взаимодействие со спиртами (реакции этерификации)


2. Взаимодействие с NH 3 при нагревании (образуются амиды кислот)



Амиды кислот гидролизуются с образованием кислот:




или их солей:



3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты - PCl 3 , PCl 5 , тионилхлорид SOCl 2 .



4. Образование ангидридов кислот (межмолекулярная дегидратация)



Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:




III. Реакции замещения атомов водорода у α-углеродного атома



Особенности строения и свойств муравьиной кислоты

Строение молекулы


Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

Химические свойства

Муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Проявляя свойства альдегида, она легко окисляется до угольной кислоты:



В частности, НСООН окисляется аммиачным раствором Ag 2 O и гидроксидом меди (II) Сu(ОН) 2 , т. е. дает качественные реакции на альдегидную группу:




При нагревании с концентрированной H 2 SO 4 муравьиная кислота разлагается на оксид углерода (II) и воду:



Муравьиная кислота заметно сильнее других алифатических кислот, так как карбоксильная группа в ней связана с атомом водорода, а не с электроно-донорным алкильным радикалом.

Способы получения предельных монокарбоновых кислот

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:



В качестве окислителей используют KMnO 4 , K 2 Cr 2 O 7 , HNO 3 и другие реагенты.


Например:


5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 S0 4 → 5СН 3 СООН + 2K 2 SO 4 + 4MnSO 4 + 11Н 2 O

2. Гидролиз сложных эфиров


3. Окислительное расщепление двойных и тройных связей в алкенах и в алкинах


Способы получения НСООН (специфические)

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

СO + NaOH → HCOONa формиат натрия


2HCOONa + H 2 SO 4 → 2НСООН + Na 2 SO 4

2. Декарбоксилирование щавелевой кислоты


Способы получения СН 3 СООН (специфические)

1. Каталитическое окисление бутана


2. Синтез из ацетилена


3. Каталитическое карбонилирование метанола


4. Уксуснокислое брожение этанола


Так получают пищевую уксусную кислоту.

Получение высших карбоновых кислот

Гидролиз природных жиров


Непредельные монокарбоновые кислоты

Важнейшие представители

Общая формула алкеновых кислот: C n H 2n-1 COOH (n ≥ 2)


CH 2 =CH-COOH пропеновая (акриловая) кислота



Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.


C 17 H 33 COOH - олеиновая кислота, или цис -октадиен-9-овая кислота


Транс -изомер олеиновой кислоты называется элаидиновой кислотой.


C 17 H 31 COOH - линолевая кислота, или цис, цис -октадиен-9,12-овая кислота




C 17 H 29 COOH - линоленовая кислота, или цис, цис, цис -октадекатриен-9,12,15-овая кислота

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:



Отдельные представители дикарбоновых кислот

Предельные дикарбоновые кислоты HOOC-R-COOH


HOOC-CH 2 -COOH пропандиовая (малоновая) кислота, (соли и эфиры - малонаты)


HOOC-(CH 2) 2 -COOH бутадиовая (янтарная) кислота, (соли и эфиры - сукцинаты)


HOOC-(CH 2) 3 -COOH пентадиовая (глутаровая) кислота, (соли и эфиры - глутораты)


HOOC-(CH 2) 4 -COOH гексадиовая (адипиновая) кислота, (соли и эфиры - адипинаты)

Особенности химических свойств

Дикарбоновые кислоты во многом сходны с монокарбоновыми, однако являются более сильными. Например, щавелевая кислотасильнее уксусной почти в 200 раз.


Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей - кислые и средние:


HOOC-COOH + NaOH → HOOC-COONa + H 2 O


HOOC-COOH + 2NaOH → NaOOC-COONa + 2H 2 O


При нагревании щавелевая и малоновая кислоты легко декарбоксилируются:



Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих – карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН – формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса “-оат” (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты – соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов – маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную – как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная – жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, – соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Все началось с уксуса, по крайней мере, открытие карбоновых кислот . Название объединяет органические соединения, содержащие карбоксильную группу COOH.

Важно расположение атомов именно в таком порядке, поскольку есть и другие кислородосодержащие соединения.

Уксусную из карбоновых открыли первой, но ее строение многие века оставалось тайной. Вещество знали, как продукт скисания вин.

Как соединение 2-ух атомов , 4-ех и 2-ух кислорода стала известна миру лишь в 18-ом столетии.

После, открыли целый ряд карбоновых . Ознакомимся с их классификацией, общими свойствами и областями применения.

Свойства карбоновых кислот

Отличаясь от другой органики наличием карбоксильных групп, карбоновые кислоты классифицируются по их числу.

Есть одно-, двух-, и многоосновные соединения. Одноосновные карбоновые кислоты выделяются связью между карбоксильной группой и углеводородным радикалом.

Соответственно, общая формула веществ группы: — C n H 2 n +1 COOH. Уксусная – одноосновная. Ее химическая запись: — CH 3 COOH. Еще проще строение соединения: — COCOOH.

К простейшим отнесена и с формулой C 2 H 5 COOH. У остальных соединений одноосновного ряда есть изомеры, то есть, разные варианты строения.

У муравьиной же, уксусной и пропионовой есть лишь один план строения.

Если у карбоновой кислоты формула с двумя карбоксильными группами, она может называться диосновной.

Общая запись веществ категории: — COOH-R-COOH. Как видно, карбоксильные группы располагаются по разные стороны линейной молекулы.

В многоосновных карбоксильных радикалов, как минимум три. Два стоят по краям молекулы, а остальные крепятся к центральным атомам углерода. Такова, к примеру, лимонная . Пространственная запись ее формулы: —

Подразделяют карбоновые соединения и по характеру углеводородного радикала. Химические связи между его атомами могут быть одинарными.

В этом случае перед нами предельные карбоновые кислоты. Наличие двойных связей указывает на непредельные вещества.

Формула непредельных карбоновых кислот может одновременно являться записью высших представителей класса.

Высшими называют соединения, в которых боле 6-ти атомов углерода. Соответственно, от 1-го до 5-ти атомов углерода – признак низших веществ.

Высшие карбоновые кислоты – это, к примеру, , , линоленовая, пальмитиновая и арихидоновая. В полследней 21 атом углерода, в остальных по 18.

Имея органическое происхождение, большинство карбоновых пахнут, хотя бы слегка. Однако, есть группа особенно ароматных.

В их состав входит бензольное ядро. То есть, группы являются производными бензола. Его формула: — C 6 H 6 .

У вещества сладковатый запах. Поэтому, карбоновые с бензольным ядром именуют ароматическими. Причем, обязательна прямая связь ядра и карбоксильных групп.

По физическому состоянию карбоновые бывают, как жидкими, так кристаллическими. Имеется в виду агрегатность веществ при обычных условиях.

Часть соединений растворима в воде, другая часть смешивается лишь с органикой. Нюансы химического поведения зависят от количества в молекулах карбоксильных групп.

Так, типичная реакция карбоновых кислот одноосновной категории– окрашивание лакмусовой в цвет.

Классикой, так же, считается взаимодействие с галогенами, тогда как дикарбоновые соединения могут образовывать эфиры карбоновых кислот. Они «рождаются» во взаимодействии со спиртами.

Карбоновая кислота с двумя основаниями всегда содержит метиленовую группу, то есть, двухвалентную CH 2 .

Ее наличие между карбоксильными группами повышает кислотность атомов водорода. Поэтому, возможна конденсация производных . Это еще одно объяснение появления эфиров.

Двухосновные соединения образуют, так же, соли карбоновых кислот . Они используются на производстве моющих средств, в частности, мыла.

Впрочем, о том, где пригождаются карбоновые кислоты и их соединения, поговорим отдельно.

Применение карбоновых кислот

В производстве мыла особенно важны стеариновая и пальмитиновая кислоты. То есть, используются высшие соединения.

Они делают мыльные брикеты твердыми и позволяют смешать фракции, расслаивающие без присутствия кислот.

Способность делать массы однородными пригождается и на производстве лекарств. Большинство связующих элементов в них – карбоновые кислоты.

Соответственно, применение реагентов внутрь, как и наружно, безопасно. Главное, знать предельную дозировку.

Превышение дозы, или концентрации кислот, ведет к разрушительным последствиям. Возможны химические ожоги, отравления.

Зато, едкость соединений наруку металлургам, мебельщикам, рестовраторам. Им карбоновые кислоты и смеси с ними помогают полировать и очищать неровные, заржавевшие поверхности.

Растворяя верхний слой металла, реагенты улучшают его внешний вид и эксплуатационные характеристики.

Химические карбоновые кислоты могут быть очищенными, или же, техническими. Для работы с металлами подойдут и последние.

Но, в качестве косметических и лекарственных средств применяют лишь высокоочищенные соединения. Такие нужны и в пищевой промышленности.

Около трети карбоновых кислот – официально зарегистрированные добавки, известные простым обывателям, как ешки.

На упаковках они отмечаются букврй Е и порядковым номером рядом с ней. Уксусная кислота, к примеру, пишется, как Е260.

Пищей карбоновые кислоты могут служить и для растений, входя в состав удобрений. Одновременно, можно создавать яды для вредоносных насекомых и сорняков.

Идея заимствована из природы. Ряд растений самостоятельно вырабатывают карбоновые кислоты, дабы близ них не было других трав, конкурирующих за почву и ее ресурсы. При этом, вырабатывающие яд растения, сами имеют к нему иммунитет.

Около трети карбоновых соединений используют в качестве протрав для тканей. Обработка необходима, чтобы материи равномерно окрашивались. С этой же целью реактивы применяют в кожевенной промышленности.

Добыча карбоновых кислот

Поскольку карбоновые кислоты биогенны, около 35% из них получают из природных продуктов. Но, химический синтез выгоднее.

Поэтому, при возможности переходят на него. Так, гиалуроновую кислоту, используемую для омоложения, долгое время добывали из пуповин младенцев и крупного рогатого скота.

Теперь же, соединение получают биохимическим способом, выращивая на пшеничном субстрате бактерий, беспрерывно дающих кислоту.

Получение карбоновых кислот чисто химическим путем – это окисление спиртов и альдегидов.

Под последним понятием скрываются спирты, лишенные водорода. Реакция протекает так: — СН 3 – СН 2 ОН → СН 3 – СОН → СН 3 – СООН.

Ряд карбоновых кислот получают гидролизом сложных эфиров. Получая в свой состав воду, они преобразуются в героинь .

Сформировать их можно и из моногалогенпроизводных. Кислоты из них получаются под действием цианида . Полупродукт реакции необходимо разложить водой.

От схемы производства, количества его ступеней, расходных материалов, во многом зависит стоимость конечных продуктов. Узнаем, каков ценник на карбоновые кислоты в их чистом виде.

Цена карбоновых кислот

Большинство карбоновых кислот продают большими объемами. Фасуют, обычно, по 25-35 килограммов. Жидкости разливают в канистры.

Порошки засыпают в полиэтиленовые пакеты, а стеариновую кислоту, вообще, заворачивают в . Ценник, обычно, выставляется за кило.

Так, 1000 граммов лимонной кислоты стоит в районе 80-ти рублей. Столько же берут за муравьиную и щавелевую.

Стоимость олеиновой – около 130-ти рублей за килограмм. Салициловая кислота оценивается уже в 300. Стеариновая кислота на 50-70 рублей дешевле.

Ряд карбоновых кислот оценивается в долларах, поскольку основные поставки ведутся из США и стран Евросоюза.

Оттуда поступает, к примеру, гиалуроновая кислота. За килограмм отдают уже не пару сотен рублей, а несколько сот баксов.

Отечественный продукт присутствует, но ему не доверяют, в первую очередь, клиенты красоты.

Они знают, что омоложение с помощью гиалуроновой кислоты – придумка американцев, практикуемая ими полвека.

Соответственно, велика практика производства препарата, который должен быть качественным, ведь попадает в кожу и организм.

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

КАРБОНОВЫЕ КИСЛОТЫ

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Число карбоксильных групп характеризует основность кислоты.

В зависимости от количества карбоксильных групп карбоновые кислоты подразделяются на одноосновные карбоновые кислоты (содержат одну карбоксильную группу), двухосновные (содержат две карбоксильные группы) и многоосновные кислоты.

В зависимости от вида радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные, непредельные и ароматические. Предельные и непредельные кислоты объединяют под общим названием кислоты алифатического или жирного ряда.

    Одноосновные карбоновые кислоты

1.1 Гомологический ряд и номенклатура

Гомо­логический ряд одноосновных предельных карбоновых кислот (иногда их называют жирными кислотами) начинается с муравьиной кислоты

Формула гомологического ряда

Номенклатура ИЮПАК разрешает сохранять для многих кислот их тривиальные названия, которые обычно указывают на природный источник, из которого была выделена та или иная кислота, например, муравьиная, уксусная, масляная, валериановая и т.д.

Для более сложных случаев названия кислот производят от названия уг­леводородов с тем же числом атомов углерода, что и в молеку­ле кислоты, с добавлением окончания -овая и слова кислота. Муравьиная кислота Н-СООН называется метановой кисло­той, уксусная кислота СН 3 -СООН - этановой кислотой и т. д.

Таким образом, кислоты рассматриваются как производные углеводородов, одно звено которых превращено в карбоксил:

При составлении названий кислот с разветвленной цепью по рациональной номенклатуре их рассматривают как производные уксусной кислоты, в молекуле которой атомы водорода замещены радикалами, например, триметилуксусная кислота (СН 3) 3 С – СООН.

1.2 Физические свойства карбоновых кислот

Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью изменяет их свойства.

Обычная для карбонила поляризация двойной связи С=0 сильно возрастает за счет дополнительного стягивания свобод­ной электронной пары с соседнего атома кислорода гидроксильной группы:

Следствием этого является значительное ослабление связи О-Н в гидроксиле и легкость отщепления атома водорода от него в виде протона (Н +). Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ-электронов соседней связи С-С к карбоксильной группе и появлению (как у альдегидов и кетонов) пониженной электронной плотности (δ +) на α-углеродном атоме кислоты.

Все карбоновые кислоты обладают кислой реакцией (обна­руживается индикаторами) и образуют соли с гидроксидами, оксидами и карбонатами металлов и с активными метал­лами:

Карбоновые кислоты в большинстве случаев в водном растворе диссоциированы лишь в малой степени и являются слабыми кислотами, значительно уступая таким кислотам, как соляная, азотная и серная. Так, при растворении одного моля в 16 л воды степень диссоциации муравьиной кислоты равна 0,06, уксусной кислоты - 0,0167, в то время как соля­ная кислота при таком разбавлении диссоциирована почти полностью.

Для большинства одноосновных карбоновых кислот рК а = 4,8, только муравьиная кислота имеет меньшую величи­ну рК а (около 3,7), что объясняется отсутствием электронодонорного эффекта алкильных групп.

В безводных минеральных кислотах карбоновые кислоты протонируются по кислороду с образованием карбкатионов:

Сдвиг электронной плотности в молекуле недиссоцииро­ванной карбоновой кислоты, о котором говорилось выше, по­нижает электронную плотность на гидроксильном атоме кис­лорода и повышает ее на карбонильном. Этот сдвиг еще боль­ше увеличивается в анионе кислоты:

Результатом сдвига является полное выравнивание заря­дов в анионе, который фактически существует в форме А - резонанс карбоксилат-аниона.

Первые четыре представителя ряда карбоновых кислот - подвижные жидкости, смешивающиеся с водой во всех отно­шениях. Кислоты, в молекуле которых содержится от пяти до девяти атомов углерода (а также изомасляная кислота), - маслянистые жидкости, растворимость их в воде невелика.

Высшие кислоты (от С 10) - твердые тела, практически не­растворимы в воде, при перегонке в обычных условиях они разлагаются.

Муравьиная, уксусная и пропионовая кислоты имеют ост­рый запах; средние члены ряда обладают неприятным запа­хом, высшие кислоты запаха не имеют.

На физических свойствах карбоновых кислот сказывается значительная степень ассоциации вследствие образования во­дородных связей. Кислоты образуют прочные водород­ные связи, так как связи О-Н в них сильно поляризованы. Кроме того, карбоновые кислоты спо­собны образовывать водородные связи с участием атома кисло­рода карбонильного диполя, обладающего значительной электроотрицательностью. Действительно, в твердом и жидком со­стоянии карбоновые кислоты существуют в основном в виде циклических димеров:

Такие димерные структуры сохраняются в некоторой степе­ни даже в газообразном состоянии и в разбавленных растворах в неполярных растворителях.

      Химические свойства

Для кислот характерны три типа реакций: замещения иона водорода карбоксильной группы (образование солей); с участием гидроксильной группы (образование сложных эфиров, галогенангидридов, ангидридов кислот); замещения водорода в радикале.

Образование солей. Карбоновые кислоты легко образуют соли при взаимодействии с взаимодействии с металлами, их оксидами, со щелочами или основаниями, при действии аммиака или аминов:

Соли карбоновых кислот находят широкое применение в народном хозяйстве. Они используются в качестве катализаторов, стабилизаторов полимерных материалов, при изготовлении красок и т.д.

Образование сложных эфиров. Со спиртами кислоты дают сложные эфиры:

Образование галогенангидридов. При действии на кислоты галогенидов фосфора или SОС1 2 получаются галогенангидриды кислот:

Галогенангидриды – очень реакционноспособные вещества, которые применяются для разнообразных синтезов.

Образование ангидридов кислот. Если от двух молекул карбоновых кислот отнять одну молекулу воды (в присутствии водоотнимающих веществ Р 2 О 5 и др.), образуется ангидрид карбоновой кислоты:

Ангидриды кислот, подобно галогенангидридам, очень реакци-онноснособны; они разлагаются различными соединениями с активным водородом, образуя производные кислоты и свобод­ную кислоту:

Галогенирование карбоновых кислот. Водородные атомы углеводо­родных радикалов в кислотах по реакционной способности по­добны атомам водорода в алканах. Исключение составляют атомы водорода, расположенные у α-углеродного атома (непо­средственно связанного с карбоксилом). Так, при действии хлора и брома в присутствии переносчиков галогенов (РС1 3 , 1 2 и др.) на карбоновые кислоты или на их хлорангидриды проис­ходит замещение именно α -водородных атомов:

Действие окислителей. Одноосновные карбоновые кис­лоты, как правило, устойчивы к действию окислителей. Легко окисляются лишь муравьиная кислота (до СО 2 и Н 2 О) и кисло­ты с третичным атомом углерода в α -положении. При окисле­нии последних получаются α -оксикислоты:

В животных организмах одноосновные карбоновые кисло­ты также способны окисляться, причем атом кислорода на­правляется всегда в β-положение. Так, например, в организме больных диабетом масляная кислота переходит в β -оксимасляную кислоту:

Образование кетонов Сухая пе­регонка кальциевых и бариевых солей карбоновых кислот (кроме муравьиной кислоты) приводит к образованию кетонов. Так, при перегонке ацетата кальция, полученного из СаСО 3 и СН 3 СООН, образуется диметилкетон, при перегонке пропионовокислого кальция - диэтилкетон:

Образование амидов. При нагревании аммониевых солей кислот по­лучаются амиды:

Образование углеводородов. При сплавле­нии солей щелочных металлов карбоновых кислот со щелоча­ми (пиролиз) происходит расщепление углеродной цепи и декарбоксилирование, в результате чего из углеводородного радикала кис­лоты образуется соответствующий углеводород, например:

Важнейшие представители

Муравьиная кислота - бесцветная жидкость с резким запа­хом. Является сильным восстановителем и окисляется до уголь­ной кислоты. В природе свободная муравьиная кислота встреча­ется в выделениях муравьев, в соке крапивы, в поте животных. Применяют муравьиную кислоту при крашении тканей в качестве восстановителя, при дублении кож, в медицине, в различных органических синтезах.

Уксусная кислота - бесцветная жидкость с резким запахом. Водный раствор (70 - 80 %) уксусной кислоты называется уксусной эссенцией, а 3 -5%-ный водный раствор - столовым уксу­сом.

Уксусная кислота широко встречается в природе. Она содер­жится в моче, поте, желчи и коже животных, растениях. Образуется при уксуснокислом брожении жидкостей, содержащих спирт (вино, пиво и др.).

Широко используется в химической промышленности для производства ацетатного шелка, красителей, сложных эфиров, ацетона, уксусного ангидрида, солей и т.д. В пищевой промыш­ленности уксусная кислота используется для консервирования продуктов, некоторые сложные эфиры уксусной кислоты приме­няются в кондитерском производстве.

Масляная кислота представляет собой жидкость с неприят­ным запахом. Содержится в виде сложного эфира в коровьем масле. В свободном состоянии находится в прогоркшем масле.

2. Двухосновные карбоновые кислоты

Общая формула гомологического ряда предельных двухосновных кислот

Примерами могут служить:

Предельные двухосновные кислоты - твердые кристалли­ческие вещества. Подобно тому, как это отмечалось для одноосновных кислот, предельные двухосновные кислоты с четным числом атомов углерода плавятся при более высокой темпера­туре, чем соседние гомологи с нечетным числом атомов углерода. Растворимость в воде кислот с нечетным числом атомов угле­рода значительно выше растворимости кислот с четным чис­лом атомов углерода, причем с возрастанием длины цепи рас­творимость кислот в воде уменьшается.

Двухосновные кислоты диссоциируют последовательно:

Они сильнее соответствующих одноосновных кислот. Сте­пень диссоциации двухосновных кислот понижается с увели­чением их молекулярной массы.

В молекуле двухосновных кислот содержатся две карбок­сильные группы, поэтому они дают два ряда производных, на­пример средние и кислые соли, средние и кислые сложные эфиры:

При нагревании щавелевой и малоновой кислот легко от­щепляется СО 2:

Двухосновные кислоты с четырьмя и пятью атомами угле­рода в молекуле, т. е. янтарная и глутаровая кислоты, при на­гревании отщепляют элементы воды и дают внутренние цик­лические ангидриды:

3. Непредельные карбоновые кислоты

Состав непредельных одноосновных кислот с одной двой­ной связью можно выразить общей формулой С n Н 2 n -1 СООН. Как и для любых бифункциональных соединений, для них ха­рактерны реакции как кислот, так и олефинов. α.β-Непредельные кислоты несколько превосходят по силе соответст­вующие жирные кислоты, так как двойная связь, находящая­ся рядом с карбоксильной группой, усиливает ее кислотные свойства.

Акриловая кислота. Простейшая непредельная одноосновная кислота

Олеиновая, линолевая и линоленовая кислоты.

Олеиновая кислота С 17 Н 33 СООН в виде глицеринового эфира чрезвычайно распространена в природе. Ее строение выража­ется формулой

Олеиновая кислота - бесцветная маслянистая жидкость, легче воды, на холоду затвердевает в игольчатые кристаллы, плавящиеся при 14 °С. На воздухе она быстро окисляется и желтеет.

Молекула олеиновой кислоты способна присоединять два атома галогена:

В присутствии катализаторов, например Ni, олеиновая кислота присоединяет два атома водорода, переходя в стеари­новую кислоту.

Олеиновая кислота представляет собой цис-изомер (все природные непредельные высокомолекулярные кислоты, как правило, относятся к цис-ряду).

Линолевая С 17 Н 31 СООН и линоленовая С 17 Н 29 СООН кисло­ты еще более ненасыщены, чем олеиновая кислота. В виде сложных эфиров с глицерином - глицеридов - они являются главной составной частью льняного и конопляного масел:

В молекуле линолевой кислоты две двойные связи. Она может присоединять четыре атома водорода или галогена. В молекуле линолевой кислоты три двойные связи, поэтому она присоединяет шесть атомов водорода или галогена. Обе кислоты, присоединяя водород, переходят в стеариновую кис­лоту.

Сорбиновая кислота

Она имеет две сопряженные друг с другом и с карбоксильной группой двойные связи, имеющие транс-конфигурацию; является пре­красным консервантом для многих пищевых продуктов: овощ­ных консервов, сыра, маргарина, фруктов, рыбных и мясных продуктов.

Малеиновая и фумаровая кислоты. Простейшими из двухосновных кислот, содержащих этиленовую связь, являют­ся два структурных изомера:

Кроме того, для второй из этих кислот возможны две про­странственные конфигурации:

Фумаровая кислота содержится во многих растениях: осо­бенно часто она встречается в грибах. Малеиновая кислота в природе не найдена.

Обе кислоты обычно получают при нагревании яблочной (оксиянтарной) кислоты:

При медленном, осторожном нагревании получается главным образом фумаровая кислота; при более сильном нагревании и при перегонке яблочной кислоты получается малеиновая кис­лота.

Как фумаровая, так и малеиновая кислота при восстанов­лении дают одну и ту же янтарную кислоту.


Top