Какие виды связей возникают между атомами углерода. Теория строения органических соединений

Большинство органических соединений имеют молекулярное строение. Атомы в веществах с молекулярным типом строения всегда образуют только ковалентные связи друг с другом, что наблюдается и в случае органических соединений. Напомним, что ковалентным называется такой вид связи между атомами, который реализуется за счет того, что атомы обобществляют часть своих внешних электронов с целью приобретения электронной конфигурации благородного газа.

По количеству обобществлённых электронных пар ковалентные связи в органических веществах можно разделить на одинарные, двойные и тройные. Обозначаются данные типы связей в графической формуле соответственно одной, двумя или тремя чертами:

Кратность связи приводит к уменьшении ее длины, так одинарная С-С связь имеет длину 0,154 нм, двойная С=С связь – 0,134 нм, тройная С≡С связь – 0,120 нм.

Типы связей по способу перекрывания орбиталей

Как известно, орбитали могут иметь различную форму, так, например, s-орбитали имеют сферическую, а p-гантелеобразную форму. По этой причине связи также могут отличаться по способу перекрывания электронных орбиталей:

ϭ-связи – образуются при перекрывании орбиталей таким образом, что область их перекрывания пересекается линией, соединяющей ядра. Примеры ϭ-связей:

π-связи – образуются при перекрывании орбиталей, в двух областях – над и под линией соединяющей ядра атомов. Примеры π-связей:

Как узнать, когда в молекуле есть π- и ϭ-связи?

При ковалентном типе связи ϭ-связь между любыми двумя атомами есть всегда, а π-связь имеет только в случае кратных (двойных, тройных) связей. При этом:

  • Одинарная связь – всегда является ϭ-связью
  • Двойная связь всегда состоит из одной ϭ- и одной π-связи
  • Тройная связь всегда образована одной ϭ- и двумя π-связями.

Укажем данные типы связей в молекуле пропиновой кислоты:

Гибридизация орбиталей атома углерода

Гибридизацией орбиталей называют процесс, при котором орбитали, изначально имеющие разные формы и энергии смешиваются, образуя взамен такое же количество гибридных орбиталей, равных по форме и энергии.

Так, например, при смешении одной s- и трех p- орбиталей образуются четыре sp 3 -гибридных орбитали:

В случае атомов углерода в гибридизации всегда принимает участие s- орбиталь, а количество p -орбиталей, которые могут принимать участие в гибридизации варьируется от одной до трех p- орбиталей.

Как определить тип гибридизации атома углерода в органической молекуле?

В зависимости от того, со скольким числом других атомов связан какой-либо атом углерода, он находится либо в состоянии sp 3 , либо в состоянии sp 2 , либо в состоянии sp- гибридизации:

Потренируемся определять тип гибридизации атомов углерода на примере следующей органической молекулы:

Первый атом углерода связан с двумя другими атомами (1H и 1C), значит он находится в состоянии sp -гибридизации.

  • Второй атом углерода связан с двумя атомами – sp -гибридизация
  • Третий атом углерода связан с четырьмя другими атомами (два С и два Н) – sp 3 -гибридизация
  • Четвертый атом углерода связан с тремя другими атомами (2О и 1С) – sp 2 -гибридизация.

Радикал. Функциональная группа

Под термином радикал, чаще всего подразумевают углеводородный радикал, являющийся остатком молекулы какого-либо углеводорода без одного атома водорода.

Название углеводородного радикала формируется, исходя из названия соответствующего ему углеводорода заменой суффикса –ан на суффикс –ил .

Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), который отвечает за её конкретные химические свойства.

В зависимости того, какая из функциональных групп в молекуле вещества является старшей, соединение относят к тому или иному классу.

R – обозначение углеводородного заместителя (радикала).

Радикалы могут содержать кратные связи, которые тоже можно рассматривать как функциональные группы, поскольку кратные связи вносят вклад в химические свойства вещества.

Если в молекуле органического вещества содержится две или более функциональных группы, такие соединения называют полифункциональными.

В состав большинства органических соединений входит всего лишь несколько основных элементов: углерод, водород, азот, кислород, сера и значительно реже другие элементы. Таким образом, все многообразие органических соединений определяется, с одной стороны, их качественным и количественным составом, а с другой – порядком и характером связей между атомами.

1.1 Электроотрицательность элементов

Электроотрицательность атома – это его способность притягивать элементы. Значения электроотрицательности не имею значимости констант, а показывают лишь относительную способность атомов притягивать электроны сильнее или слабее при образовании с другими атомами.

Атомы, расположенные в ряду электроотрицательности перед углеродом и имеющие значение электроотрицательности меньше чем 2,5, повышают электронную плотность на атоме углерода при образовании связи с ним. Наоборот, атомы, значение электроотрицательности которых превышает 2,5, понижают электронную плотность на атоме углерода при образовании связи.

1.2 Ионная связь

Электронная конфигурация для любого атома может образовываться двумя различными способами. Один из них – перенос электронов: атомы одного элемента отдают электроны, которые переходят к атомам другого элемента. В данном случае между этими атомами образуется так называемая ионная (электровалентная, гетерополярная) связь :

Атом, отдавший электроны, превращается в положительный ион (катион ); атом, принявший электрон, - в отрицательный ион (анион ).

Отличительными чертами ионных соединений являются мгновенность протекания реакций, диссоциация и сольватация ионов в водных растворах, высокие температуры плавления и кипения, растворимость в полярныхе растворителях, электрическая проводимость растворов и расплавов.

Гетерополярная связь возникает между атомами, сильно отличающимися по электроотрицательности.

1.3 Ковалентная связь

При взаимодействии атомов, равных или близких по электроотрицательности, переноса электронов не происходит. Образование электронной конфигурации для таких атомов происходит вследствие обобщения двух, четырех или шести электронов взаимодействующими атомами. Каждая из обобщенных пар электронов образует одну ковалентную (гомеополярную) связь :

Важнейшими физическими параметрами ковалентной связи являются те, которые характеризуют их симметрию, размеры, электрические и термохимические свойства.

Длина связи – это равновесное расстояние между центрами ядер и оно зависит от того, с какими другими атомами они связаны. Так, длина связи С-С в зависимости от окружения изменяется в пределах 0,154 – 0,14 нм.

Валентные углы – углы между линиями, соединяющими связываемые атомы. Знание длины связей и валентных углов необходимо для построения правильной пространственной модели, представления о распределении электронной плотности и используется при квантово-химических расчетах.


Энергия разрыва химической связи – это энергия, затрачиваемая на разрыв этой связи или выделяющаяся при ее образовании в расчете на моль частиц. В случае молекул, содержащих две или более одинаковых связи, различают энергию разрыва одной из этих связей или среднюю энергию разрыва этих связей. Чем выше энергия химической связи, тем прочнее связь. Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль, слабой – если ее энергия меньше 100 кДж/моль. Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считается, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие. Прочность связи обычно уменьшается с увеличением ее длины.

Полярность химических связей – характеристика химической связи, показывающая изменение распределения электронной плотности в пространстве вокруг ядер в сравнении с распределением электронной плотности в образующих данную связь нейтральных атомах. Знание полярности связи необходимо для суждения о распределении электронной плотности в молекуле, следовательно, о характере ее реакционной способности.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.

1.4 Разрыв связей

Разрыв ковалентной связи между двумя атомами может происходить по-разному:

В случае а каждый атом отделяется с одним электроном, что приводит к образованию частиц, называемых радикалами и обладающих высокой реакционной способностью вследствие наличия неспаренного электрона; такой разрыв называют гомолитическим расщеплением связи. В случаях б и в один атом может удерживать оба электрона, оставляя другой атом без электронов, в результате чего возникают отрицательный и положительный ионы соответственно. Если атомы R и Х неидентичны, расщепление может идти по одному из таких путей в зависимости от того, какой атом – R или Х – удерживает пару электронов. Такого рода разрывы носят название гетеролитического расщепления и приводят к образованию ионной пары.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. Гибридизация атомных орбиталей углерода

Атомная орбиталь - это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако - это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.

Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона.

В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона. На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму.

Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) s р 3 -орбиталей:

Это - s р 3 -гибридизация.

Гибридизация - выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

ТЕТРАЭДР (углы = 109°28?

s р 2 -Гибридизация - смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные s р 2 -орбитали.

Эти s р 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°.

Негибридизованная р -орбиталь перпендикулярна к плоскости трех гибридных s р 2 -орбиталей (ориентирована вдоль осиz ).

Верхняя половина р -орбитали находится над плоскостью, нижняя половина - под плоскостью.

Тип s р 2 -гибридизации углерода бывает у соединений с двойной связью:

С=С, С=О, С=N.

Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.)

Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи(р )-связью.

s р -Гибридизация s - и одной р s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р у -связей. На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp -гибридных орбиталей, и двух р-связей.

2. Реакции электрофильного замещения атомов водорода в ряду бензола

1. Реакция галогенирования . Реакция галогенирования бензольного кольца осуществляется в присутствии катализаторов (чаще всего галогенидов железа или алюминия). Роль катализатора состоит в образовании сильнополяризованного комплекса с галогеном: ФОРМУЛА. Крайний слева атом хлора в комплексе становится электрононенасыщенным в результате поляризации связи Cl - Cl и способным к взаимодействию с нуклеофильными реагентами (в данном случае с бензолом):

д - комплекс отщепляет протон и превращается в продукт замещения (хлорбензол). Протон взаимодействует с - с регенерацией хлорида алюминия, образуя при этом хлористый водород:

В случае избытка галогена могут быть получены ди- и полигалогензамещенные, вплоть до полного замещения всех атомов водорода в бензоле.

Прямое йодирование в ароматическом ядре не удается провести вследствие малой реакционной способности йода. Прямое фторирование ароматических углеводородов протекает настолько энергично, что образуется сложная смесь продуктов, в которой целевые фторпроизводные содержатся в небольших количествах. В зависимости от условий проведения реакции галогенирования алкилбензолов галоген может замещать атомы водорода в бензольном кольце («на холоду» в присутствии кислот Льюиса) или в боковой цепи (при нагревании или на свету). В последнем случае реакция идет по свободнорадикальному механизму, подобно механизму замещения в алканах.

2. Реакция нитрования . Бензол медленно реагирует с концентрированной азотной кислотой. Скорость нитрования значительно возрастает, если реакцию нитрования проводить смесью концентрированных азотной и серной кислот (обычно в соотношении 1:2); эту смесь называют нитрующей.

Процесс происходит благодаря тому, что серная кислота, как более сильная, протонирует азотную кислоту, а образовавшаяся протонированная частица разлагается на воду и активный электрофильный реагент - нитроний-катион (катион нитрония).

Реакция нитрования бензола является реакцией электрофильного замещения и носит ионный характер. Вначале происходит образование р -комплекса в результате взаимодействия электронов бензольного кольца с положительно заряженной частицей нитроний-катиона.

Затем происходит переход р-комплекса в у-комплекс. При этом два р -электрона из шести идут на образование ковалентной связи С-NO2+. Оставшиеся четыре -электрона распределяются между пятью углеродными атомами бензольного кольца. Образуется у -комплекс в виде неустойчивого карбкатиона.

Неустойчивый у -комплекс под воздействием иона HSO4- теряет протон с формированием ароматической структуры нитробензола.

3. Реакция сульфирования . Для введения сульфогруппы в бензольное кольцо используют дымящуюся серную кислоту, т. е. содержащую избыток серного ангидрида (SO3). Электрофильной частицей является SO3. Механизм сульфирования ароматических соединений включает следующие стадии:

4. Реакция алкилирования по Фриделю-Крафтсу. Роль катализатора (обычно AlCl3) в этом процессе заключается в усилении поляризации галогеналкила с образованием положительно заряженной частицы, которая вступает в реакцию электрофильного замещения: ФОРМУЛА

3. Антрацен: строение и основные химические свойства

Антрацен - соединение, молекула которого состоит из трех ароматических колец, лежащих в одной плоскости. Его получают из антраценовой фракции каменноугольной смолы, кипящей при 300…350 °С. В лабораторной практике антрацен можно получить

а) по реакции Фриделя-Крафтса:

б) по реакции Фиттига:

В молекуле антрацена наиболее активны девятое и десятое положения, находящиеся под влиянием двух крайних колец. Антрацен легко вступает в реакции присоединения по этим положениям:

При действии окислителей антрацен легко образует антрахинон, который широко используется для синтеза красителей:

4. Сопряженные диены и способы их синтеза

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы СnH2n-2.

Две двойные связи в молекуле углеводорода могут быть расположены различным образом. Если они сосредоточены у одного углеродного атома, их называют кумулированными:-C=C=C- Если две двойные связи разделены одной простой связью, их называют сопряженными:-C=C - C=C- Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными: -C=C- (CH2)n - C=C-

5. Правила ориентации в бензольном кольце

При изучении реакций замещения в бензольном кольце было обнаружено, что если в нем уже содержится какой-либо заместитель, то в зависимости от его характера второй вступает в определенное положение. Таким образом, каждый заместитель в бензольном кольце проявляет определенный направляющий или ориентирующий эффект. На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. имеет ли действующий реагент электрофильную или нуклеофильную природу. Все заместители по характеру своего направляющего действия в делятся на две группы.

Заместители первого рода направляют вводимую группу в орто- и пара - положения:

К заместителям этого рода относятся следующие группы, расположенные в порядке убывания своей ориентирующей силы: N(CH3)2,NH2, OH, CH3 и другие алкилы, а также Cl, Br, I.

Заместители второго рода в реакциях электрофильного замещения направляют вводимые группы в мета-положение. К заместителям этого рода относятся следующие группы: - NO2,- C N, - SO3H, - CHO, - COOH.

6. Природа двойной связи и химические свойства этиленовых соединений

По современным представлениям две связи, соединяющие два ненасыщенных углеродных атома, не одинаковы: одна из них является у-связью, а другая р-связью. Последняя связь менее прочна и «разрывается» при реакциях присоединения.

О неравноценности двух связей в непредельных соединениях говорит, в частности, сравнение энергии образования простой и двойной связей. Энергия образования простой связи равна 340 кДж/моль (примерно 82 ккал/моль), а двойной - 615 кДж/моль (примерно 147 ккал/моль). Естественно, что для разрыва р -связи затрачивается меньше энергии, чем для разрыва у-связи. Таким образом, непрочность двойной связи объясняется тем, что одна из двух связей, образующих двойную связь, имеет иное электронное строение, чем обычные -связи, и обладает меньшей прочностью.

Названия олефинов обычно производят от названия соответствующих предельных углеводородов, но окончание -ан заменяется окончанием -илен. По международной номенклатуре вместо окончания -илен олефинам придают более краткое окончание -ен .

Изомерия олефинов зависит от изомерии цепи атомов углерода, т. е. от того, является ли цепь неразветвленной или разветвленной, и о тположения двойной связи в цепи. Существует еще и третья причина изомерии олефинов: различное расположение атомов и атомных групп в пространстве, т. е. стереоизомерия. Изомерия, зависящая от различного расположения в пространстве атомов и атомных групп, получила название пространственной изомерии , или стереоизомерии .

Геометрическая , или цис- и транс-изомерия , - это вид пространственной изомерии, зависящей от различного расположения атомов по отношению к плоскости двойной связи.

Для обозначения места двойной связи (а также ответвлений в цепи) согласно международной номенклатуре ИЮПАК нумеруют атомы углерода самой длинной цепи, начиная с того конца, к которому ближе стоит двойная связь. Таким образом, два изомера бутилена, обладающие неразветвленной цепью, будут называться бутен-1 и бутен-2:

1. Реакция гидрирования . Непредельные углеводороды легко присоединяют водород по двойной связи в присутствии катализаторов 67 (Pt, Pd, Ni). С Pt или Pd катализатором реакция идет при 20…100 °С, с Ni - при более высоких температурах:

2. Реакция галогенирования . Алкены при обычных условиях присоединяют галогены, особенно легко хлор и бром. В результате образуются дигалогенопроизводные алканов, содержащие галогены у соседних атомов углерода, так называемые вицинальные дигалогеналканы: CH

3CH=CH2 + Cl2> CH3CHClCH2Cl

3. Реакция присоединения галогенводородов. Гидрогалогенирование

4. Реакция гидратации алкенов. В обычных условиях алкены не реагируют с водой. Но в присутствии катализаторов при нагревании и давлении они присоединяют воду и образуют спирты:

5. Реакция присоединения серной кислоты. Взаимодействие алкенов с серной кислотой протекает аналогично присоединению галогенводородов. В результате образуются кислые эфиры серной кислоты:

6. Реакция алкилирования алкенов . Возможно каталитическое присоединение к алкенам алканов с третичным атомом углерода (катализаторы - H2SO4, HF, AlCl3 и BF3):

7. Реакция окисления алкенов . Алкены легко окисляются. В зависимости от условий окисления образуются различные продукты.При сжигании на воздухе алкены превращаются в диоксид углерода и воду: CH2=CH2 + 3O2> 2CO2 + 2H2O.

При взаимодействии алкенов с кислородом воздуха в присутствии серебряного катализатора образуются органические окиси:

Аналогично действуют на этилен гидропероксиды ацилов (реак- ция Прилежаева):

Одна из наиболее характерных реакций окисления - взаимодействие алкенов со слабощелочным раствором перманганата калия KMnO4 c образованием двухатомных спиртов - гликолей (реакция Вагнера). Реакция протекает на холоду следующим образом:

Концентрированнные растворы окислителей (перманганат калия в кислой среде, хромовая кислота, азотная кислота) разрывают молекулу алкена по двойной связи с образованием кетонов и кислот:

8. Реакция озонирования алкенов. Она также широко используется для установления структуры алкенов:

9. Реакции замещения. Алкены в определенных условиях способны и к реакциям замещения. Так, при высокотемпературном (500…550 °С) хлорировании алкенов происходит замещение водорода в аллильном положении:

10. Реакция полимеризации алкенов

СН2 = СН2 > (-СН2 - СН2 -)n получается полиэтилен

11. Реакция изомеризации . При высоких температурах или в присутствии катализаторов алкены способны изомеризоваться, при этом происходит либо изменение строения углеродного скелета, либо перемещение двойной связи:

7. Нафталин и его строение. Правило Хюккеля

Углеводороды нафталинового ряда являются основным ароматическим углеводородом каменноугольной смолы. Существует большое число полициклических ароматических соединений, в которых бензольные кольца имеют общие орторасположенные атомы углерода. Наиболее важные из них - нафталин, антрацен и фенантрен. В антрацене кольца соединены линейно, тогда как в фенантрене - под углом в отличие от молекулы бензола не все связи в ядре нафталина имеют одинаковую длину:

Правило Хюккеля : ароматической является плоская моноциклическая сопряженная система, содержащая (4n + 2) p-электронов (где n = 0,1,2...).

Таким образом, ароматическими будут плоские циклические сопряженные системы, содержащие 2, 6,10, 14 и т.д. p-электронов.

8. Алкины и sp-гибридизация атома углерода. Способы получения алкинов

Углеводороды ряда ацетилена имеют общую формулу

Сn H2n -2

Первый простейший углеводород этого ряда - ацетилен С2Н2. В структурной формуле ацетилена, как и у других углеводородов этогоряда, содержится тройная связь:

Н - С? С - Н.

s р -Гибридизация - это смешивание (выравнивание по форме и энергии) одной s - и одной р -орбиталей с образованием двух гибридных s р -орбиталей. s р -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода.

Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям у -связей.

На рисунке s р -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Тройная углерод-углеродная связь С?С состоит из у-связи, возникающей при перекрывании sp-гибридных орбиталей, и двух р-связей.

Карбид кальция производят в промышленном масштабе нагреванием угля в электрических печах с негашеной известью при температуре около 2500 °С по реакции

CaO + 3C> CaC2 + CO.

Если на карбид кальция подействовать водой, то он бурно разлагается с выделением газа - ацетилена:

Более новый промышленный метод получения ацетилена - пиролиз углеводородов, в частности, метана, который при 1400 °С дает смесь ацетилена с водородом:

2CH4> H-C=C-H + 3H2.

1. Дегидрогалогенирование вицинальных дигалогеналканов

2. Реакция ацетиленидов натрия с первичными алкилгалогенидами:

3. Дегалогенирование вицинальных тетрагалогеналканов:

9. Методы получения и химические свойства спиртов

Спирты - это производные углеводородов, в которых один или несколько атомов водорода замещены на соответствующее число гидроксильных групп (-ОН).

Общая формула спиртов

где R - алкильная или замещенная алкильная группа.

Характер радикала R, с которым связана гидроксильная группа, определяет предельность или непредельность спиртов, а количество гидроксильных групп определяет его атомность: спирты бывают одноатомные, двухатомные, трехатомные и многоатомные.

Получение: 1. Гидратация алкенов

2. Ферментативный гидролиз углеводов . Ферментативный гидролиз сахаров под действием дрожжей - наиболее древний синтетический химический процесс - до сих пор имеет огромное значение для получения этилового спирта.

При использовании крахмала в качестве исходного материала, кроме этилового спирта, образуется еще (в меньших количествах) сивушное масло, представляющее собой смесь первичных спиртов, главным образом изопентилового, изопропилового и изобутилового.

3. Синтез метилового спирта:

4. Реакция гидроборирования-окисления алкенов :

5. Синтезы спиртов с помощью реактива Гриньяра :

Свойства: Химические свойства спиртов определяются как строением алкильного радикала, так и реакционноспособной гидроксильной группой. Реакции, идущие с участием гидроксильной группы, могут протекать либо с разрывом связи С-ОН (360 кДж/моль), либо с разрывом связи О-Н (429 кДж/моль) А. Разрыв связи С-ОН

1. Реакция с галогенводородами:

ROH + HX >RX + H2O.

Реакционная способность уменьшается в ряду: HI > HBr > HCl

2. Реакция с тригалогенидами фосфора:

3. Дегидратация спиртов в присутствии водоотнимающих агентов:

Б. Разрыв связи О-Н

4. Реакция спиртов с металлами (Na, K, Mg, Al)

5. Образование эфиров :

Реакция этерефикации

6. Реакции окисления При окислении спиртов хромовой смесью или KMnO4 в растворе серной кислоты состав продуктов зависит от характера углеродного атома (первичный, вторичный или третичный), с которым связана гидроксильная группа: первичные спирты образуют альдегиды, вторичные спирты - кетоны.

9. Алкадиены и способы их получения

Диеновыми углеводородами (диенами) называют ненасыщенные углеводороды, имеющие две двойные связи, общей формулы

Две двойные связи в молекуле углеводорода могут быть расположены различным образом.

Если они сосредоточены у одного углеродного атома, их называют кумулированными:

Если две двойные связи разделены одной простой связью, их называют сопряженными:

Если же двойные связи разделены двумя и более простыми связями, то их называют изолированными:-C=C- (CH2)n - C=C-

Диены обычно получают теми же методами, что и простые алкены. Например, наиболее важный диен, бутадиен-1,3 (используемый для получения синтетического каучука), получают в США при дегидрировании бутана:

В СССР применялся промышленный синтез бутадиена-1,3 по методу С.В. Лебедева (1933) из этилового спирта при 400…500 °С над катализатором MgO-ZnO:

Реакция включает следующие стадии: дегидрирование спирта до альдегида, альдольную конденсацию ацетальдегида, восстановление альдоля до бутандиола-1,3 и наконец дегидратацию спирта:

10. Электроотрицательность элементов и типы химических связей

Элемктроотрицамтельность (ч) (относительная электроотрицательность) -- фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов.

Самая высокая степень электроотрицательности у галогенов и сильных окислителей (p-элементов VII-группы, O, Kr, Xe), а низкая -- у активных металлов (s-элементов I группы).

Ионная. Электронная конфигурация инертного газа для любого атома может образоваться благодаря переносу электронов: атомы одного из элементов отдают электроны, которые переходят к атомам другого элемента.

В данном случае между этими атомами образуется так называемая ионная (электровалентная, гетерополярная) связь.

Такого типа связь возникает между атомами элементов, обладающих существенно различной электроотрицательностью (например, между типичным металлом и типичным неметаллом).

Ковалентная связь. При взаимодействии атомов, равных (атомы одного и того же элемента) или близких по электроотрицательности, переноса электронов не происходит. Электронная конфигурация инертного газа для таких атомов образуется вследствие обобщения двух, четырех или шести электронов взаимодействующими атомами. Каждая из обобществленных пар электронов образует одну ковалентную (гомеополярную) связь:

Ковалентная связь - наиболее распространенный в органической химии тип связи. Она достаточно прочная.

Ковалентная связь и соответственно молекула могут быть неполярными, когда оба связанных атома обладают одинаковым сродством к электрону (например, Н:Н). Она может быть полярной, когда электронная пара вследствие большего сродства к электрону одного из атомов оттянута в его сторону:

При таком способе обозначения + и - означают, что на атоме со значком - избыточная электронная плотность, а на атоме со значком + электронная плотность несколько понижена по сравнению с изолированными атомами.

Донорно-акцепторная связь. При взаимодействии атомов, имеющих неподеленные электронные пары с протоном или другим атомом, у которого не хватает до образования октета (дублета) двух электронов, неподеленная электронная пара становится общей и образует между этими атомами новую ковалентную связь.

При этом атом, отдающий электроны, называется донором, а атом, принимающий электроны, называется акцептором:

химический ковалентный бензольный нафталин

В возникающем ионе аммония образовавшаяся ковалентная связь отличается от связей, существовавших в молекуле аммиака, только способом образования, по физическим и химическим свойствам все четыре связи N-H абсолютно идентичны.

Семиполярная связь. Эта разновидность донорно-акцепторной связи часто встречается в молекулах органических соединений (например, в нитросоединениях, в сульфоксидах и др.).

Размещено на Allbest.ru

Подобные документы

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Основные положения данного метода. Гибридизация атомных орбиталей и условия их образования. Правила выбора канонических форм. Гибридизация атома углерода и гибридных орбиталей.

    презентация , добавлен 15.10.2013

    Характеристика ковалентной связи, понятия насыщаемости, направленности и полярности. Гибридизация атомных орбиталей и ионная связь. Межмолекулярные химические связи (вандерваальсовы силы). Типы кристаллических решеток. Молекулярная структура льда.

    презентация , добавлен 11.08.2013

    Гибридизация – квантово-химический способ описания перестройки орбиталей атома в молекуле по сравнению со свободным атомом. Изменение формы и энергии орбиталей атома при образовании ковалентной связи и достижения более эффективного перекрывания орбиталей.

    презентация , добавлен 22.11.2013

    Характеристика ковалентной связи: насыщаемость, направленность, полярность. Гибридизация атомных орбиталей. Ионная, молекулярная, водородная и металлическая химические связи. Вандерваальсовы силы, межмолекулярное взаимодействие; кристаллические решетки.

    презентация , добавлен 22.04.2013

    Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа , добавлен 05.08.2013

    Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.

    реферат , добавлен 04.02.2009

    Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.

    курсовая работа , добавлен 02.11.2008

    Развитие модельных представлений в квантовой химии. Метод валентных связей. Особенности описания гибридизации атомных орбиталей. Концепция резонанса. Правила выбора канонических форм. Условия образования молекулярных орбиталей и заполнение их электронами.

    презентация , добавлен 22.10.2013

    Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат , добавлен 21.02.2009

    Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.

Данный урок поможет вам получить представление о теме «Ковалентная связь в органических соединениях». Вы вспомните природу химических связей. Узнаете о том, за счет чего образуется ковалентная связь, что является основой этой связи. На этом уроке также рассматривается принцип построения формул Льюиса, рассказывается о характеристиках ковалентной связи (полярности, длине и прочности), объясняется теория А. Бутлерова, рассказывается о том, что такое индуктивный эффект.

Тема: Введение в органическую химию

Урок: Ковалентная связь в органических соединениях.

Свойства связи (полярность, длина, энергия, направленность)

Химическая связь имеет в основном электростатический характер. Например, молекула водорода образуется из двух атомов, потому что двум электронам энергетически выгодно находиться в поле притяжения двух ядер (протонов). Это состояние в виде молекулы Н 2 обладает меньшей энергией по сравнению с двумя отдельными атомами водорода.

Большинство органических веществ содержат .

Для образования ковалентной связи между двумя атомами каждый атом обычно предоставляет в общее пользование по одному электрону.

В упрощенной модели используется двухэлектронное приближение, т.е. все молекулы строятся на основании суммирования двух электронных связей, характерных для молекулы водорода.

С точки зрения закона взаимодействия электрических зарядов (закон Кулона) электроны не могут сблизиться из-за огромных сил электростатического отталкивания. Но, согласно законам квантовой механики, электроны с противоположно направленными спинами взаимодействуют друг с другом и образуют электронную пару.

Если ковалентную связь обозначать как пару электронов, получим еще один вид записи формулы вещества - электронную формулу или формулу Льюиса

(амер. Дж. Льюис, 1916 г.). Рис. 1.

Рис. 1. Формулы Льюиса

В органических молекулах имеются не только одинарные связи, но еще двойные и тройные. В формулах Льюиса их обозначают, соответственно, двумя или тремя парами электронов. Рис. 2

Рис. 2. Обозначение двойной и тройной связей

Рис. 3. Ковалентная неполярная связь

Важной характеристикой ковалентной связи является ее полярность . Связь между одинаковыми атомами, например в молекуле водорода или между атомами углерода в молекуле этана неполярная - в ней электроны в равной степени принадлежат обоим атомам. См. Рис. 3.

Рис. 4. Ковалентная полярная связь

Если же ковалентная связь образована различными атомами, то электроны в ней смещены к более электроотрицательному атому. Например, в молекуле хлороводорода электроны смещены к атому хлора. На атомах возникают небольшие частичные заряды, которые обозначают d+ и d-. Рис. 4.

Чем больше разница между электроотрицательности атомов, тем более полярная связь.

Взаимное влияние атомов в молекуле приводит к тому, что может происходить смещение электронов связи, даже если они находятся между одинаковыми атомами.

Например, в 1,1,1-трифторэтане CH 3 CF 3 электроотрицательные атомы фтора «стягивают» на себя электронную плотность с атома углерода. Часто это обозначают стрелочкой вместо валентной черточки.

В результате у атома углерода, связанного с атомами фтора, возникает недостаток электронной плотности, и он перетягивает валентные электроны к себе. Такое смещение электронной плотности по цепи связей называется индуктивным эффектом заместителей . Рис. 5.

Рис. 5. Смещение электронной плотности в 1,1,1-трифторэтане

Длина и прочность связи

Важными характеристиками ковалентной связи являются ее длина и прочность. Длина большинства ковалентных связей составляет от 1*10 -10 м до 2*10 -10 м или от 1 до 2 в ангстремах (1 А = 1*10 -10 м).

Прочность связи - это энергия, которую нужно затратить, чтобы разорвать эту связь. Обычно приводят величины разрыва 1 моль или 6,023*10 23 связей. См. табл. 1.

Одно время считалось, что молекулы можно изображать структурными формулами, лежащими в плоскости бумаги, и эти формулы отражают, почти отражают, истинное строение молекулы. Но примерно в середине 19 века выяснилось, что это не так. Впервые к такому выводу пришел, как я уже говорил на предыдущих уроках, тогда еще студент Вант-Гофф. А сделал он это на основании экспериментов выдающегося французского биолога и химика Пастера.

Дело в том, что Пастер занимался изучением солей винной кислоты. И ему, можно сказать, повезло. Кристаллизуя смешанную соль винной кислоты, он под микроскопом обнаружил, что у него получается, в общем-то, набор совершенно одинаковых, весьма симпатичных кристаллов. Но эти кристаллы легко разделить на две группы, которые никак не совместимы друг с другом, а именно: все кристаллы делятся на две части, одна из которых является зеркальным отражением другой.

Так была впервые открыта оптическая, или зеркальная, . Пастер смог вручную пинцетом под микроскопом разделить эти кристаллы и обнаружил, что все химические свойства практически совпадают. Не совпадает только одно, скорее, физическое свойство, а именно: растворы одного типа кристаллов и ему зеркального другого типа кристаллов по-разному вращали плоскость поляризации света, проходящего через них.

Рис. 6. Модели молекулы метана

Для того чтобы объяснить результаты экспериментов Пастера, Вант-Гофф предположил, что атом углерода находится всегда в неплоском окружении, причем это не плоское окружение не имеет ни центра, ни плоскости симметрии. Тогда атом углерода, соединенный с 4 другими различными фрагментами молекулы, не одинаковыми между собой, должен обладать зеркальной симметрией. Именно тогда Вант-Гофф предположил тетраэдрическое строение атома углерода. Оптическая изомерия следовала из этого предположения. В результате удалось объяснить пространственное строение органических соединений. Рис. 6.

Но ученые столкнулись с еще одной загадкой, которую не удалось разрешить до сих пор. Дело в том, что в природе органические соединения, которые образуются действительно в органической живой материи, как правило, содержат левовращающие, имеется в виду плоскость поляризации проходящего света, аминокислоты и правовращающие сахара. В то время как при любом органическом синтезе обязательно получается смесь таких изомеров.

Причина такой избирательности живой природы не ясна до сих пор. Но это не мешает ученым продолжать синтезировать все новые органические соединения и изучать их свойства.

В нарисованных на плоскости формулах не отражается пространственное расположение атомов относительно друг друга. Однако тетраэдрическое строение атома углерода в молекулах с одинарными связями приводит к существованию оптической изомерии

Подведение итога урока

Вы получили представление о теме «Ковалентная связь в органических соединениях». Вы вспомнили природу химических связей. Узнали о том, за счет чего образуется ковалентная связь, что является основой этой связи. Рассмотрели принцип построения формул Льюиса. Узнали о характеристиках ковалентной связи (полярности, длине и прочности), что такое индуктивный эффект.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 12, 15 (с. 11) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Составьте структурные и электронные формулы этана С 2 Н 6 , этена С 2 Н 4 , пропина С 3 Н 8.

3. Приведите примеры из неорганической химии, показывающие, что атомы в молекуле влияют друг на друга и их свойства при этом изменяются.

Реакционная способность органических соединений обусловлена типом химических связей и взаимным влиянием атомов в молекуле. Эти факторы в свою очередь определяются взаимодействием атомных орбиталей (АО).

Часть пространства, в котором вероятность нахождения электрона максимальна, называется атомной орбиталью.

В органической химии широко используется представление о гибридных орбиталях атома углерода и других элементов. Понятие о гибридизации орбиталей необходимо в тех случаях, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им связей. Постулируется, что различные атомные орбитали близкой энергии взаимодействуют между собой с образованием гибридных орбиталей одинаковой энергии. Гибридные орбитали за счет большого перекрывания обеспечивают образование более прочной связи, чем негибридизованные орбитали. В зависимости от числа вступивших в гибридизацию орбиталей атом углерода может находится в трех видах гибридизации:

1. Первое валентное состояние, sp3-гибридизация (тетраэдрическая)

В результате линейной комбинации (смешения) четырех АО возбужденного атома углерода (одной 2s и трех 2p) возникают четыре равноценные sp 3 -гибридные орбитали, направленные в пространстве к вершинам тетраэдра под углами 109,5?. По форме гибридная орбиталь представляет объемную восьмерку, одна из лопостей которой значительно больше другой.

2. Второе валентное состояние, sp2 - гибридизация (треугольная)

Возникает в результате смещения одной 2s и двух 2p атомных орбиталей. Образовавшиеся три sp 2 - гибридные орбитали, располагаются в одной плоскости под углом 120? друг к другу, а негибридизованная p - АО - в перпендикулярной к ней плоскости. В состоянии sp 2 - гибридизации атом углерода находится в молекулах алкенов, карбонильной и карбоксильной группах

3. Третье валентное состояние, sp - гибридизация

Возникает в результате смешения одной 2s и одной 2p АО. Образовавшиеся две sp гибридные орбитали расположены линейно, а две p - орбитали в двух взаимноперпендикулярных плоскостях. Атом углерода в sp гибридном состоянии находится в молекулах алкинов и нитрилов

Возможны три типа связей, соединяющих отдельные атомы элементов в соединении - электростатические, ковалентные и металлические.

К электростатическим относится прежде всего ионная связь, которая возникает, когда один атом передает другому электрон или электроны, а образовавшиеся ионы притягиваются друг к другу.

Для органических соединений характерны в основном ковалентные связи. Ковалентная связь - это химическая связь, образованная за счет обобществления электронов связываемых атомов.

Для квантовомеханического описания ковалентной связи используют два основных подхода: метод валентных связей (ВС) и метод молекулярных орбиталей (МО). химический ковалентный молекула

В основе метода ВС лежит представление о спаривании электронов, происходящем при перекрывании атомных орбиталей. Обобщенная пара электронов с противоположными спинами образует между ядрами двух атомов область с повышенной электронной плотностью, притягивающих оба ядра. Возникает двухэлектронная ковалентная связь. По методу ВС атомные орбитали сохраняют свою индивидуальность. Поэтому оба спаренных электрона остаются на атомных орбиталях связанных атомов, т. е. они локализуются между ядрами.

В начальной стадии развития электронной теории (Льюис) было выдвинуто представление о ковалентной связи как обобществленной паре электронов. Для объяснения свойств различных атомов образовывать определенное число ковалентных связей было сформулировано правило октета. Согласно ему при образовании молекул из атомов 2 периода периодической системы Д.И. Менделеева происходит заполнение внешней оболочки с образованием устойчивой 8ми электронной системы (оболочки инертного газа). Четыре электронные пары могут образовывать ковалентные связи или находистя в виде неподеленных электронных пар.

При переходе к элементам третьего и последующих периодов првило октета теряет свою силу, т. к. появляются достаточно низкие по энергии d-орбитали. Поэтому атомы высших периодов могут образовывать более чтырех ковалентных связей. Предположения Льюиса о химической связи как об обществленной паре электронов носило сугубо качественный характер.

По методу МО электроны связи не локализованы на АО определенных атомов, а находятся на МО, представляющих собой линейную комбинацию атомных орбиталей (ЛКАО) всех атомов, составляющих молекулу. Число образующихся МО равно числу перекрывающих АО. Молекулярная орбиталь - это, как правило, многоцентровая орбиталь и заполняющие ее электроны делокализованы. Заполнение МО электронами происходит с соблюдением принципа Паули. МО, полученная сложением волновых функций атомных орбиталей и имеющая более низкую энергию, чем образующие ее АО, называется связывающей. Нахождение электронов на этой орбитали снижает общую энергию молекулы и обеспечивает связывание атомов. МО с высокой энергией, полученная вычитанием волновых функций, называется разрыхляющей (антисвязывающей). Для разрыхляющей орбитали вероятность нахождения электронов между ядрами равна нулю. Эта орбиталь вакантна.

Кроме связывающих и разрыхляющих существуют еще несвязывающие МО, обозначаемые как n-МО. Они образованы с участием АО, несущих пару электронов, не участвующих в образовании связи. Такие электроны еще называют свободными неподеленными парами или n-электронами (они имеются на атомах азота, кислорода, галогенов).

Ковалентные связи бывают двух типов: у- (сигма) и р- (пи) связи.

у-Связь - это связь, образованная при осевом перекрывании любых (s-, p- или гибридных sp- атомных орбиталей) с расположением максимума перекрывания на прямой, соединяющей ядра связываемых атомов.

По методу МО у-перекрывание приводит к возникновению двух МО: связывающей у-МО и разрыхляющей у*-МО.

р-Связь - это связь, образованная при боковом (латеральном) перекрывании p-АО, с расположением максимума электронной плотности по обе стороны от прямой, соединяющей ядра атомов. По методу МО в результате линейной комбинации двух p-АО образуется связывающая р-МО и разрыхляющая р*-МО.

Двойная связь является сочетанием у-, р- связей, а тройная одной у- и двух р- связей.

Основными характеристиками ковалентной связи являются энергия, длина, полярность, поляризуемость, направленность и насыщаемость.

Энергия связи это количество энергии, выделяющейся при образовании данной связи или необходимое для разъединения двух связанных атомов. Чем больше энергия, тем прочнее связь.

Длина связи это расстояние между центрами связанных атомов. Двойная связь короче одинарной, а тройная - короче двойной.

Полярность связи обуславливается неравномерным распределением (поляризацией) электронной плотности, причина которой в различии электроотрицательностей связанных атомов. С увеличением разности в электроотрицательности связанных атомов полярность связи возрастает. Таким образом, можно представить переход от неполярной ковалентной связи через полярную к ионной связи. Полярные ковалентные связи предрасположены к гетеролитическому разрыву.

Поляризуемость связи это мера смещения электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.

У органогенов (углерод, азот, кислород, сера, галогены) в образовании у - связи энергетически более выгодным является участие гибридных орбиталей, обеспечивающих более эффективное перекрывание.

Перекрывание двух одноэлектронных АО не единственный путь образования ковалентной связи. Ковалентная связь может образовываться при взаимодействии заполненной двухэлектронной орбитали (донор) с вакантной орбиталью (акцептор). Донорами служат соединения, содержащие либо орбитали с неподеленной парой электронов, либо р - МО. Ковалентная связь, образующаяся за счет электронной пары одного атома, называется донорно-акцепторной или координационной.

Разновидностью донорно-акцепторной связи служит семиполярная связь. Например, в нитрогруппе одновременно с образованием ковалентной связи за счет неподеленной пары электронов азота на связанных атомах возникают противоположные по знаку заряды. За счет электростатического притяжения между ними возникает ионная связь. Результирующее сочетание ковалентной и ионной связи называется семиполярной связью. Донорно-акцепторная связь характерна для коплексных соединений. В зависимости от типа донора различают n- или р-комплексы.

Атом водорода, связанный с сильно электроотрицательным атомом (N, O, F) электронодефицитен и способен взаимодействовать с неподеленной парой электронов другого сильно элетроотрицательного атома, находящегося либо в той же, либо в другой молекуле. В результате возникает водородная связь. Графически водородная связь обозначается тремя точками.

Энергия водородной связи невелика (10- 40 кДж/моль) и в основном определяется электростатическим взаимодействием.

Межмолекулярные водородные связи обуславливают ассоциацию органических соединений, что приводит к повышению температуры кипения спиртов (t? кип. C 2 H 5 OH=78,3?C; t? кип. CH 3 OCH 3 = -24?C) , карбоновых кислот и многих других физических (t? пл, вязкость) и химических (кислотно-основные) свойств.

Могут возникать и внутримолекулярные водородные связи, например в салициловой кислоте, что приводит к повышению ее кислотности.

Молекула этилена плоская, угол между H - C - H связи составляет 120?С. Для того, чтобы разорвать p - р - двойную связь и сделать возможным вращение вокруг оставшейся sp 2 - у- связи, необходимо затратить значительное количество энергии; поэтому вращение вокруг двойной связи затруднено и возможно существование цис-, транс-изомеров.

Ковалентная связь неполярна только при связывании одинаковых или близких по электроотрицательности атомов. При соединении электронов плотность ковалентной связи смещена в сторону более электроотрицательного атома. Такая связь поляризована. Поляризация не ограничивается только одной у - связью, а распространяется по цепи и ведет к появлению на атомах частичных зарядов (у)

Таким образом заместитель «Х» вызывает поляризацию не только своей у - связи с атомом углерода, но передает влияние (проявляет эффект) и на соседние у - связи. Такой вид электронного влияния называется индуктивным и обозначается j.

Индуктивный эффект - это передача электронного влияния заместителя по цепи у - связей.

Направление индуктивного эффекта заместителя принято качественно оценивать сравнением с атомом водорода, индуктивный эффект которого принят за 0 (связь C-H считают практически неполярной).

Заместитель Х, притягивающий электронную плотность у - связи сильнее, чем атом водорода, проявляет отрицательный индуктивный эффект -I. Если же по сравнению с атомом водорода заместитель Y увеличивает электронную плотность в цепи, то он проявляет положительный индуктивный эффект, +I. Графически индуктивный эффект изображается стрелкой, совпадающей с положением валентной черточки и направленной острием в сторону более электроотрицательного атома. +I эффектом обладают алкильные группы, атомы металлов, анионы. Большинство заместителей обладает -I эффектом. И тем большим, чем выше электроотрицательность атома, образующего ковалентную связь с атомом углерода. Ненасыщенные группы (все без исключения) обладают -I-эффектом, величина которого растет с увеличением кратных связей.

Индуктивный эффект из-за слабой поляризуемости у-связи затухает через три-четыре у-связи в цепи. Его действие наиболее сильно на первых двух ближайших к заместителю атомах углерода.

Если в молекуле имеются сопряженные двойные или тройные связи, возникает эффект сопряжения (или мезомерный эффект; М-эффект).

Эффект сопряжения - это передача электронного влияния заместителя по системе р - связей. Заместители, повышающие электронную плотность в сопряженной системе, проявляют положительный эффект сопряжения, +М-эффект. +М-эффектом обладают заместители,содержащие атомы с неподеленной парой электронов или целым отрицательным зарядом. Заместители, оттягивающие электронную плотность из сопряженной системы, проявляют отрицательный (мезомерный) эффект сопряжения, -М-эффект. К ним относятся ненасыщенные группировки и положительно заряженные атомы. Перераспределение (смещение) общего электронного облака под действием М-эффекта графически изображается изогнутыми стрелками, начало которых показывает, какие p- или р-электроны смещаются, а конец - связь или атом, к которым они смещаются

Мезомерный эффект (эффект сопряжения) передается по системе сопряженных связей на значительно большие расстляния.

Ковалентная связь может быть поляризована и делокализована.

Локализованная ковалентная связь - электроны связи поделены между двумя ядрами связываемых атомов.

Делокализованная связь - это ковалентная связь, молекулярная орбиталь которой охватывает более 2-х атомов. Это практически всегда р - связи.

Сопряжение (мезомерия, mesos - средний) - явление выравнивания связей и зарядов в реальной молекуле (частице) по сравнению с реальной, но не существующей структурой.

Теория резонанса - реальная молекула или частица описывается набором определенных, так называемых резонансных структур, которые отличаются друг от друга только распределением электронной плотности.


Top