Квантовая теория. Будет ли у нас когда-нибудь «теория всего»? Квантовая физика теория всего

Английский физик Исаак Ньютон опубликовал книгу, в которой объяснил движение объектов и принцип действия гравитации. «Математические начала натуральной философии» подарили вещам в мире установленные места. История гласит, что в возрасте 23 лет Ньютон отправился в сад и увидел, как с дерева падает яблоко. В то время физики знали, что Земля каким-то образом притягивает объекты с помощью гравитации. Ньютон развил эту идею.

По словам Джона Кондуитта, помощника Ньютона, при виде яблока, падающего на землю, Ньютону пришла мысль, что гравитационная сила «не была ограничена определенным расстоянием от земли, а простирается гораздо дальше, чем считалось обычно». По мнению Кондуитта, Ньютон задался вопросом: а почему аж не до Луны?

Вдохновленный своими догадками, Ньютон разработал закон всемирного тяготения, который одинаково хорошо работал и с яблоками на Земле, и с планетами, вращающимися вокруг Солнца. Все эти объекты, несмотря на различия, подчиняются одним законам.

«Люди думали, что он объяснил все, что нуждалось в объяснении, - говорит Барроу. - Его достижение было великим».

Проблема в том, что Ньютон знал, что в его работе зияют бреши.

К примеру, гравитация не объясняет, как небольшие объекты удерживаются вместе, поскольку эта сила не так уж и велика. Кроме того, хотя Ньютон мог объяснить, что происходит, он не мог объяснить, как это работает. Теория была неполной.

Была проблема и побольше. Хотя законы Ньютона объяснили наиболее распространенные явления во Вселенной, в некоторых случаях объекты нарушали его законы. Эти ситуации были редкими и обычно включали высокие скорости или повышенную гравитацию, но они были.

Одной из таких ситуаций стала орбита Меркурия, ближайшей к Солнцу планеты. Как и любая другая планета, Меркурий вращается вокруг Солнца. Законы Ньютона можно было применить для расчета движений планет, но Меркурий не хотел играть по правилам. Что более странно, его орбита не имела центра. Стало понятно, что универсальный закон всемирного тяготения был не так уж и универсален, да и не закон вовсе.

Более двух веков спустя Альберт Эйнштейн пришел на помощь со своей теорией относительности. Идея Эйнштейна, которой в 2015 году , предоставила более глубокое понимание гравитации.

Теория относительности


Ключевая идея состоит в том, что пространство и время, которые кажутся разными вещами, на самом деле переплетаются. У пространства есть три измерения: длина, ширина и высота. Время является четвертым измерением. Все четыре связаны в виде гигантской космической клетки. Если вы когда-нибудь слышали фразу «пространственно-временной континуум», именно о нем речь и идет.

Большая идея Эйнштейна заключалась в том, что тяжелые объекты вроде планет или быстро движущиеся могут искривлять пространство-время. Немного похоже на туго натянутый батут: если вы поставите что-нибудь тяжелое на ткань, образуется провал. Любые другие объекты будут скатываться по наклону к объекту во впадине. Потому, по мнению Эйнштейна, гравитация притягивает объекты.

Идея странная по своей сути. Но физики убеждены, что так и есть. Также она объясняет странную орбиту Меркурия. Согласно общей теории относительности, гигантская масса Солнца искривляет пространство и время вокруг. Будучи ближайшей к Солнцу планетой, Меркурий испытывает намного большие искривления, чем другие планеты. Уравнения общей теории относительности описывают, как это искривленное пространство-время влияет на орбиту Меркурия, и позволяют предсказать положение планеты.

Однако, несмотря на свой успех, теория относительности не является теорией всего, как и теории Ньютона. Как и теория Ньютона не работает для по-настоящему массивных объектов, теория Эйнштейна не работает в микромасштабах. Как только вы начинаете рассматривать атомы и все, что меньше, материя начинает вести себя очень странно.


До конца 19 века атом считался наименьшей единицей материи. Родившись от греческого слова «атомос», что означало «неделимый», атом по своему определению не должен был разбиваться на меньшие частицы. Но в 1870-х годах ученые обнаружили частицы, которые в 2000 раз легче атомов. Взвешивая лучи света в вакуумной трубе, они нашли чрезвычайно легкие частицы с отрицательным зарядом. Так была открыта первая субатомная частица: электрон. В следующие полвека ученые обнаружили, что у атома есть составное ядро, вокруг которого снуют электроны. Это ядро состоит из двух типов субатомных частиц: нейтронов, которые обладают нейтральным зарядом, и протонов, которые заряжены положительно.

Но и на этом еще не все. С тех пор ученые находили способы делить материю на все меньшие и меньше части, продолжая уточнять наше понимание фундаментальных частиц. К 1960-м годам ученые нашли десятки элементарных частиц, составив длинный список так называемого зоопарка частиц.

Насколько мы знаем, из трех компонентов атома единственной фундаментальной частицей остался электрон. Нейтроны и протоны делятся на крошечные кварки. Эти элементарные частицы подчиняются совершенно другому набору закону, отличному от тех, которым подчиняются деревья или планеты. И эти новые законы - которые были гораздо менее предсказуемыми - испортили физикам все настроение.

В квантовой физике у частиц нет определенного места: их местонахождение немного смазано. Словно у каждой частицы есть определенная вероятность нахождения в определенном месте. Это означает, что мир по своей сути фундаментально неопределенное место. Квантовую механику даже понять сложно. Как сказал однажды Ричард Фейнман, эксперт в квантовой механике, «думаю, я могу с уверенностью сказать, что никто не понимает квантовую механику».

Эйнштейн тоже был обеспокоен размытостью квантовой механики. Несмотря на то, что он ее, по сути, частично изобрел, сам Эйнштейн никогда не верил в квантовую теорию. Но в своих чертогах - больших и малых - как , так и квантовая механики доказали право на безраздельную власть, будучи чрезвычайно точными.

Квантовая механика объяснила структуру и поведение атомов, включая то, почему некоторые из них являются радиоактивными. Также она лежит в основе современной электроники. Вы не смогли бы прочитать эту статью без нее.

Общая теория относительности предсказала существование черных дыр. Этих массивных звезд, которые коллапсировали сами в себя. Их гравитационное притяжение настолько мощное, что даже свет не может его покинуть.

Проблема в том, что эти две теории несовместимы, поэтому не могут быть верными одновременно. Общая теория относительности гласит, что поведения объектов могут быть точно предсказаны, тогда как квантовая механика говорит, что вы можете знать только вероятность того, что будут делать объекты. Из этого следует, что остаются некоторые вещи, которые физики до сих пор не описали. Черные дыры, например. Они достаточно массивны, чтобы к ним была применима теория относительности, но и достаточно малы, чтобы можно было применить квантовую механику. Если вы не окажетесь близко к черной дыре, эта несовместимость не будет влиять на вашу повседневную жизнь. Но вызывает недоумение у физиков большую часть прошлого века. Именно такая несовместимость заставляет искать теорию всего.

Эйнштейн провел большую часть своей жизни, пытаясь найти такую теорию. Не будучи фанатом случайности квантовой механики, он хотел создать теорию, которая объединит гравитацию и остальную физику, чтобы квантовые странности остались вторичными следствиями.

Его основной задачей было заставить гравитацию работать с электромагнетизмом. В 1800-х годах физики выяснили, что электрически заряженные частицы могут притягиваться или отталкиваться. Потому некоторые металлы притягиваются магнитом. Очевидно, если два вида сил, которые объекты могут оказывать друг на друга, они могут притягиваться посредством гравитации и притягиваться или отталкиваться за счет электромагнетизма.

Эйнштейн хотел объединить две этих силы в «единую теорию поля». Чтобы сделать это, он растянул пространство-время в пять измерений. Вместе с тремя пространственными и одним временным измерениями он добавил пятое измерение, которое должно быть настолько маленьким и свернутым, что мы не смогли бы его видеть.

Это не сработало, и Эйнштейн потратил 30 лет на пустые поиски. Он умер в 1955 году, и его единая теория поля не была раскрыта. Но в следующем десятилетии появился серьезный соперник для этой теории: теория струн.

Теория струн


Идея в основе теории струн довольно проста. Основные ингреденты нашего мира вроде электронов — это не частицы. Это крошечные петли или «струны». Просто поскольку струны очень маленькие, они кажутся точками.

Как и струны на гитаре, эти петли находятся под напряжением. Значит, вибрируют на разных частотах в зависимости от размера. Эти колебания определяют, какой сорт «частицы» будет представлять каждая струна. Вибрация струны одним способом даст вам электрон. Другим - что-нибудь другое. Все частицы, открытые в 20 веке, представляют собой одни виды струн, просто вибрирующих по-разному.

Довольно сложно сразу понять, почему это хорошая идея. Но она подходит для всех сил, действующих в природе: гравитации и электромагнетизма, плюс еще двух, открытых в 20 веке. Сильные и слабые ядерные силы действуют только в пределах крошечных ядер атомов, поэтому их долго не могли обнаружить. Сильная сила удерживает ядро вместе. Слабая сила обычно ничего не делает, но если набирает достаточно силы, разбивает ядро на части: поэтому некоторые атомы радиоактивны.

Любой теории всего придется объяснить все четыре. К счастью, две ядерные силы и электромагнетизм полностью описываются квантовой механикой. Каждая сила переносится специализированной частицей. Но нет ни одной частицы, которая переносила бы гравитацию.

Некоторые физики думают, что она есть. И называют ее «гравитоном». У гравитонов нет массы, особый спин и они движутся со скоростью света. К сожалению, их пока не нашли. И здесь на сцену выходит теория струн. Она описывает струну, которая выглядит точно как гравитон: имеет корректный спин, не обладает массой и движется со скоростью света. Впервые в истории теория относительности и квантовая механика нащупали общую почву.

В середине 1980-х годов физики были восхищены теорией струн. «В 1985 году мы поняли, что теория струн решает кучу проблем, которые мучили людей последние 50 лет», - говорит Барроу. Но и у нее оказались проблемы.

Во-первых, «мы не понимаем, чем является струнная теория, в нужных деталях», говорит Филип Канделас из Оксфордского университета. «У нас нет хорошего способа ее описать».

Кроме того, некоторые прогнозы выглядят странно. В то время как теория единого поля Эйнштейна полагается на дополнительное скрытое измерение, простейшие формы теории струн нуждаются в 26 измерениях. Они нужны, чтобы увязать математику теорию с тем, что мы уже знаем о Вселенной.

Более продвинутые версии, известные как «теории суперструн», обходятся десятью измерениями. Но даже это не стыкуется с тремя измерениями, которые мы наблюдаем на Земле.

«С этим можно справиться, если допустить, что только три измерения расширились в нашем мире и стали большими, - говорит Барроу. - Другие присутствуют, но остаются фантастически малыми».

Из-за этих и других проблем, многие физики не любят теорию струн. И предлагают другую теорию: петлевая квантовая гравитация.

Петлевая квантовая гравитация


Эта теория не ставит перед собой задачу объединить и включить все, что есть в физике частиц. Вместо этого петлевая квантовая гравитация просто пытается вывести квантовую теорию гравитации. Она более ограничена, чем теория струн, но не настолько громоздка. Петлевая квантовая гравитация предполагает, что пространство-время разделено на небольшие кусочки. Издалека кажется, что это гладкий лист, но при ближайшем рассмотрении видно кучу точек, соединенных линиями или петельками. Эти маленькие волокна, которые сплетаются, предлагают объяснение гравитации. Эта идея так же непостижима, как струнная теория, и обладает схожими проблемами: нет никаких экспериментальных подтверждений.

Почему эти теории до сих пор обсуждаются? Возможно, мы просто не знаем достаточно. Если обнаружатся крупные явления, которых мы никогда не видели, мы можем пытаться понять крупную картину, а недостающие части головоломки доберем потом.

«Заманчиво думать, что мы обнаружили все, - говорит Барроу. - Но было бы весьма странно, если бы к 2015 году мы сделали все необходимые наблюдения, чтобы получить теорию всего. Почему это должно быть так?».

Есть и другая проблема. Эти теории сложно проверить, в значительной степени потому, что у них крайне жестокая математика. Канделас пытался найти способ проверить теорию струн в течение многих лет, но так и не смог.

«Главным препятствием на пути продвижения теории струн остается недостаточное развитие математики, которая должна сопровождать физические исследования, - говорит Барроу. - Она находится на раннем этапе, еще многое нужно исследовать».

При всем этом теория струн остается многообещающей. «На протяжении многих лет люди пытались объединить гравитацию с остальной физикой, - говорит Канделас. - У нас были теории, которые хорошо объясняли электромагнетизм и другие силы, но не гравитацию. С теорией струн мы пытаемся их объединить».

Реальная проблема заключается в том, что теорию всего может быть просто невозможно идентифицировать.

Когда теория струн стала популярной в 1980-х годах, было на самом деле пять ее версий. «Люди начали беспокоиться, - говорит Барроу. - Если это теория всего, почему их пять?». В течение следующего десятилетия, физики обнаружили, что эти теории могут быть преобразованы одна в другую. Это просто разные способы видения одного и того же. В результате появилась выдвинутая в 1995 году М-теория. Это глубокая версия теории струн, включающая все ранние версии. Что ж, мы по крайней мере вернулись к единой теории. М-теория требует всего 11 измерений, что намного лучше 26. Однако М-теория не предлагает единую теорию всего. Она предлагает миллиарды их. В общей сложности М-теория предлагает нам 10^500 теорий, все из которых будут логически последовательны и способны описать Вселенную.

Это выглядит хуже, чем бесполезно, но многие физики полагают, что это указывает на более глубокую истину. Возможно, наша Вселенная - одна из множества, каждая из которых описывается одной из триллионов версий М-теории. И это гигантское собрание вселенных называется « ».

В начале времен мультивселенная была как «большая пена из пузырей разных форм и размеров», говорит Барроу. Каждый пузырь затем расширился и стал вселенной.

«Мы в одном из таких пузырей, - говорит Барроу. По мере расширения пузырьков внутри них могли образоваться другие пузырьки, новые вселенные. - В процессе этого география такой вселенной серьезно усложнилась».

В каждой вселенной-пузыре действуют одни и те же физические законы. Потому в нашей вселенной все ведет себя одинаково. Но в других вселенных могут быть другие законы. Отсюда рождается странный вывод. Если теория струн действительно лучший способ объединить теорию относительности и квантовую механику, то обе они одновременно и будут, и не будут теорией всего.

С одной стороны, теория струн может дать нам совершенное описание нашей вселенной. Но она также неизбежно приведет к тому, что каждая из триллионов других вселенной будет уникальна. Серьезным изменением в мышлении будет то, что мы перестанем ждать единую теорию всего. Может быть множество теорией всего, каждая из которых будет верной в своем роде.

Добро пожаловать на блог! Я очень рада Вам!

Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики . Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация .

Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:

  • Что такое интерференция?
  • Что такое спин и суперпозиция?
  • Что такое «измерение» или «коллапс волновой функции»?
  • Что такое квантовая запутанность (или Квантовая телепортация для чайников)? (см. статью )
  • Что такое мысленный эксперимент «Кот Шредингера»? (см. статью )

Что такое квантовая физика и квантовая механика?

Квантовая механика — это часть квантовой физики.

Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.

Пример отличия законов макро- и микромиров : в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой - шар. Но в микромире (если вместо шара - атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.

Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве . В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .

Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия ) .

Для того, чтобы легче было понять законы квантовой физики и механики (Википедия) , надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.

А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.

Квантовая физика для чайников видео . В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.

Что такое интерференция?

В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.

Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной .

В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.

Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).

В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.

Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).

Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм» ? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы

Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.

Внимание! Теперь перейдём к более тонкому вопросу.

Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.

Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?

Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!

Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.

Что такое спин и суперпозиция?

Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).

В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?

Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.

  • 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
  • 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)

В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.

Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто

Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:

Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно .

Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.

Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно

То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».

Что такое «измерение» или «коллапс волновой функции»?

Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».

Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).

Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно . Нам надо измерить его состояние.

Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.

Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?

В этом-то и заключается фишка и сенсация квантовой механики . Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.

Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!

Это и называется «коллапсом волновой функции» . Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.

Внимание! Отличный для понимания пример-ассоциация из нашего макромира:

Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.

А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.

Фантастика! Не правда ли?

Но это ещё не всё. Наконец-то мы добрались до самого интересного.

Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:

  • Что такое ?
  • Что такое мысленный эксперимент .

А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.

До встречи!

Желаю всем вдохновения для всех задуманных планов и проектов!

P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?

P.S.3 Подписывайтесь на блог - форма для подписки под статьёй.

Этот текст представляет новые результаты в области неврологии и решение многих нерешенных проблем в физике. Он не касается вопросов метафизики и основан на научно проверяемых данных, но затрагивает философские темы, связанные с жизнью, смертью и происхождением вселенной.
Учитывая многослойность и насыщенность информации, может потребоваться прочесть его несколько раз, чтобы понять, несмотря на наши усилия, упростить сложные научные понятия.




Глава 1
Бог - в нейронах








Человеческий мозг - это сеть примерно ста миллиардов нейронов. Различные ощущения формируют нервные связи, воспроизводящие различные эмоции. В зависимости от стимуляции нейронов, одни связи становятся прочнее и эффективнее, а другие слабеют. Это называется нейропластичность .

Тот, кто обучается музыке, создает более сильные нервные связи между двумя полушариями головного мозга, чтобы развивать музыкальное творчество. Через обучение можно развить практически любой талант или навык.

Рудигер Гамм считал себя безнадежным студентом и не справлялся даже с элементарной математикой. Он стал развивать свои способности и превратился в человеческий калькулятор, способный на чрезвычайно сложные вычисления. Рациональность и эмоциональная устойчивость работают точно так же. Нервные связи можно укрепить.

Когда вы чем-либо занимаетесь, вы физически меняете свой мозг, чтобы достигать лучших результатов. Так как это – главный и основной механизм мозга, самосознание может значительно обогатить наш жизненный опыт.



Социальная неврология



Особые нейроны и нейромедиаторы, такие как норэпинефрин, вызывают защитный механизм, когда мы чувствуем, что наши мысли необходимо защитить от влияния извне. Если чье-то мнение отличается от нашего, в мозг поступают те же химические вещества, что обеспечивают наше выживание в опасных ситуациях.








В этом защитном состоянии более примитивная часть мозга вмешивается в рациональное мышление, и лимбическая система может блокировать нашу рабочую память, физически вызывая «ограниченность мышления».

Это можно видеть при запугивании, или при игре в покер, или когда кто-то проявляет упрямство в споре.

Какой бы ценной ни была идея, в таком состоянии мозг не способен ее обработать. На нейронном уровне он воспринимает ее как угрозу, даже если это безобидные мнения или факты, с которыми в ином случае мы могли бы согласиться.

Но когда мы выражаем себя, и наши взгляды ценятся, уровень защитных веществ в мозгу снижается, и передача дофамина активирует нейроны поощрения, и мы ощущаем свою силу и уверенность. Наши убеждения существенно влияют на химию нашего тела. Именно на этом основан эффект плацебо. Самооценка и уверенность в себе связаны с нейромедиатором серотонином.

Сильная нехватка его часто приводит к депрессии, саморазрушительному поведению и даже самоубийству. Когда общество нас ценит, это повышает уровень дофамина и серотонина в мозге и позволяет нам освободиться от эмоциональной фиксации и повысить уровень самосознания.



Зеркальные нейроны и сознание



Социальная психология часто обращается к базовой потребности человека «найти свое место» и называет это «нормативное социальное влияние.» По мере взросления наш моральный и этический компас почти полностью формируется внешней средой. Таким образом, наши действия часто исходят из того, как нас оценивает общество.








Но новые данные в области неврологии дают нам более четкое понимание культуры и индивидуальности. Новые неврологические исследования подтвердили существование эмпатических зеркальных нейронов.

Когда мы испытываем эмоции или выполняем действия, срабатывают определенные нейроны. Но когда мы видим, как это делает кто-то другой или представляем себе это, срабатывают многие из тех же нейронов, словно мы делаем это сами. Эти эмпатические нейроны связывают нас с другими людьми и позволяют чувствовать то, что чувствуют другие.

Так как эти же нейроны реагируют на наше воображение, мы получаем от них эмоциональную отдачу так же, как от другого человека. Эта система дает нам возможность самоанализа.

Зеркальные нейроны не делают различий между собой и другими. Поэтому мы так зависим от оценки окружающих и желания соответствовать.

Мы все время подвержены двойственности между тем, как мы видим себя, и как нас воспринимают другие. Это может мешать нашей индивидуальности и самооценке.






Снимки мозга показывают, что испытываем эти отрицательные эмоции еще до того, как их осознаем. Но когда мы обладаем самосознанием, мы можем изменить неправильные эмоции, потому что можем контролировать свои мысли, их вызывающие.

Это нейрохимическое следствие того, как воспоминания ослабевают, и как они восстанавливаются через синтез белка.

Самоанализ сильно влияет на то, как работает мозг.Он активизирует неокортикальные области саморегуляции, которые позволяют нам четко контролировать собственные чувства. Всякий раз, когда мы это делаем, наша рациональность и эмоциональная стабильность усиливаются. Без самоконтроля большинство наших мыслей и действий импульсивны, и то, что мы реагируем случайно и не делаем сознательный выбор,

инстинктивно раздражает нас.






Чтобы устранить это, мозг стремится оправдать наше поведение и физически переписывает воспоминания через реконсолидацию памяти, заставляя нас верить, что мы контролировали свои действия. Это называется ретроспективная рационализация, которая оставляет большинство наших отрицательных эмоций нерешенными, и они могут вспыхнуть в любое время. Они питают внутренний дискомфорт, в то время как мозг продолжает оправдывать наше иррациональное поведение. Всё это сложное и почти шизофреническое поведение подсознания - работа обширных параллельно распределенных систем в нашем мозге.



Сознание не имеет определенного центра. Видимое единство связано с тем, что каждая отдельная цепь активируется и проявляет себя в конкретный момент времени. Наш опыт постоянно меняет наши нервные связи, физически меняя параллельную систему нашего сознания. Прямое вмешательство в это может иметь сюрреалистические эффекты, что поднимает вопрос о том, что такое сознание и где оно расположено.



Если левое полушарие мозга отделить от правого, как в случае с пациентами, перенесшими разделение мозга, вы сохраните способность говорить и думать с помощью левого полушария, в то время как познавательные способности правого полушария будут сильно ограничены. Левое полушарие не будет страдать от отсутствия правого, хотя это серьезно изменит ваше восприятие.

Например, вы не сможете описать правую сторону чьего-либо лица, но вы заметите этого, не увидите в этом проблему и даже не поймете, что что-то изменилось. Так как это затрагивает не только ваше восприятие реального мира, но и ваши мысленные образы, это не просто проблема восприятия, но фундаментальное изменение сознания.



Бог - в нейронах



Каждый нейрон имеет электрическое напряжение, которое меняется, когда ионы

проникают в клетку или покидают ее. Когда напряжение достигает определенного уровня, нейрон направляет электросигнал в другие клетки, где процесс повторяется.

Когда многие нейроны испускают сигнал одновременно, мы можем измерить это в виде волны.

Мозговые волны отвечают почти за всё, что происходит в нашем мозгу, включая память, внимание и даже интеллект.

Колебания различной частоты классифицируются как альфа-, бета- и гамма-волны. Каждый тип волн связан с различными задачами. Волны позволяют клеткам мозга настроиться на частоту, соответствующую задаче, игнорируя посторонние сигналы.

Так же, как радиоприемник настраивается на волну радиостанции. Передача информации между нейронами становится оптимальной, когда их деятельность синхронизирована.

Вот почему мы испытываем когнитивный диссонанс - раздражение, вызванное двумя несовместимыми идеями. Воля - это стремление уменьшить диссонанс между каждой из активных нейронных цепей.



Эволюция может рассматриваться как такой же процесс, где природа пытается адаптироваться то есть, «резонировать» с окружающей средой. Так она развилась до уровня, где обрела самосознание и начала задумываться о собственном существовании.

Когда человек сталкивается с парадоксом стремления к цели и мысли, что существование бессмысленно, происходит когнитивный диссонанс.






Поэтому многие люди обращаются к духовности и религии, отвергая науку, которая не способна дать ответ на экзистенциальные вопросы: кто я? и для чего я есть?



Я...



«Зеркальные нейроны не делают различий между собой и другими. „

Левое полушарие во многом отвечает за создание стройной системы убеждений, что поддерживает чувство непрерывности нашей жизни.

Новый опыт сравнивается с существующей системой убеждений, и если не вписывается в нее, то просто отвергается. Балансом выступает правое полушарие мозга, играющее противоположную роль.



В то время как левое полушарие стремится к сохранению модели, правое - непрерывно

подвергает сомнению статус-кво. Если расхождения слишком велики, правое полушарие заставляет пересмотреть наше мировоззрение. Но если наши убеждения слишком сильны, правое полушарие может не преодолеть нашего отказа. Это может создать большие сложности при отражении других.

Когда нервные связи, определяющие наши убеждения, не развиты или не активны, наше сознание, единство всех активных цепей, заполняется деятельностью зеркальных нейронов, так же, как когда мы голодны, наше сознание заполнено нейронными процессами, связанными с питанием.



Это не результат центрального “Я», отдающего команды различным областям мозга.

Все части мозга могут быть активными и неактивными и взаимодействовать без центрального ядра. Так же, как пиксели на экране могут сложиться в узнаваемый образ, группа нейронных взаимодействий может выразить себя как сознание.

В любой момент мы представляем собой другой образ. Когда мы отражаем других, когда мы голодны, когда мы смотрим этот фильм. Каждую секунду мы становимся другим человеком, проходя через разные состояния.

Когда мы смотрим на себя через зеркальные нейроны, мы создаем идею индивидуальности.

Но когда мы делаем это с научным пониманием, мы видим нечто совершенно иное.






Нейронные взаимодействия, создающие наше сознание, выходят далеко за пределы наших нейронов. Мы - результат электрохимических взаимодействий между полушариями мозга и наших чувств, связывающих наши нейроны с другими нейронами в нашей среде. Нет ничего внешнего. Это не гипотетическая философия, это основное свойство зеркальных нейронов, которое позволяет нам понять самих себя через других.



Считать эту нейронную деятельность своей собственной, исключая окружение, было бы неправильно. Эволюции также отражает наши стороны сверхорганизма, где наше выживание, как приматов, зависело от коллективных способностей.

Со временем развились неокортикальные области, позволяющие менять инстинкты и подавлять гедонистические импульсы ради блага группы. Наши гены стали развивать взаимное социальное поведение в структурах сверхорганизма, тем самым отказавшись от идеи «выживания сильнейшего».



Мозг действует наиболее эффективно, когда нет диссонанса между продвинутыми областями мозга и более старыми и примитивными. То, что мы называем «эгоистичными наклонностями» - лишь ограниченное толкование эгоистичного поведения, когда характеристики человека воспринимаются через неверную парадигму индивидуальности…

… вместо научного взгляда на то, кто мы есть - мгновенный вечно меняющийся образ

единого целого, не имеющего центра.



Психологическим следствием этой системы убеждений является самосознание без привязки к мнимому «Я», что приводит к повышению ясности ума, общественной сознательности, самоконтроля и того, что часто называется «быть здесь и сейчас».






Бытует мнение, что нам необходима история, хронологический взгляд на нашу жизнь, чтобы формировать моральные ценности.

Но наше современное понимание эмпатической и социальной природы мозга показывает, что чисто научный взгляд, без привязки к индивидуальности и «истории», дает гораздо более точную, конструктивную и этичную систему понятий, чем наши разрозненные ценности.



Это логично, потому что наша обычная склонность определять себя как воображаемую индивидуальную константу толкает мозг к когнитивным расстройствам, таким, как навязчивые стереотипы и потребность возлагать ожидания.






Стремление классифицировать лежит в основе всех наших форм взаимодействия. Но классифицируя эго как внутреннее, а среду - как внешнее, мы ограничиваем собственные нейрохимические процессы и испытываем мнимое чувство разобщенности.

Личностный рост и его побочные эффекты, такие как счастье и удовлетворение, стимулируются, когда мы не подвержены стереотипам в нашем взаимодействии.



Мы можем иметь различные взгляды и не соглашаться друг с другом, но взаимодействия, которые принимают нас такими, как есть, без осуждения, становятся нейропсихологическими катализаторами, которые стимулируют мозг

принимать других и принимать рационально доказуемые системы убеждений без когнитивного диссонанса.

Стимуляция этой нейронной деятельности и взаимодействия освобождает от нужды в отвлекающих факторах и развлечениях и создает циклы конструктивного поведения в нашей среде. Социологи обнаружили, что такие явления, как курение и переедание, эмоции и идеи распространяются в обществе так же, как передаются электрические сигналы нейронов, когда их деятельность синхронизирована.






Мы - глобальная сеть нейрохимических реакций. Саморазвивающийся цикл оценки и признания, поддерживаемый ежедневными решениями - это цепная реакция, которая в конечном итоге определяет нашу коллективную способность преодолеть мнимые разногласия и взглянуть на жизнь в ее вселенской структуре.

Глава 2
Вселенская структура




За время исследований Чирена я сделал упрощенный, но всесторонний обзор его текущих результатов.

Это одна из интерпретаций работы по объединению квантовой физики и теории относительности .

Данная тема сложна, и, возможно, будет трудна для понимания. Также она содержит некоторые философские выводы, которые будут затронуты в эпилоге.



За последнее столетие было много поразительных достижений, которые привели к изменению научной системы понимания мира. Теория относительности Эйнштейна показала, что время и пространство образуют единую ткань. А Нильс Бор выявил базовые компоненты вещества, благодаря квантовой физике - области, которая существует только как «абстрактное физическое описание».








После этого Луи де Бройль открыл, что всё вещество, а не только фотоны и электроны, обладает квантовым корпускулярно- волновым дуализмом . Эти привело к появлению новых школ мысли о природе реальности, а также популярных метафизических и псевдонаучных теорий.

Например, что человеческий разум может управлять вселенной через позитивное мышление. Эти теории привлекательны, но они не поддаются проверке и могут препятствовать научному прогрессу.



Законы специальной и общей теории относительности Эйнштейна применяются в современных технологиях, например, спутниках GPS, где точность расчетов может отклоняться более чем на 10 км в день, если не учесть такие последствия, как замедление времени. То есть, для движущихся часов время идет медленнее, чем для неподвижных.








Другие эффекты теории относительности - это сокращение длины для движущихся объектов и относительность одновременности, из-за чего невозможно с точностью утверждать, что два события происходят в одно и то же время, если они разделены в пространстве.

Ничто не движется быстрее скорости света. Это означает, что если трубу длиной 10 световых секунд толкнуть вперед, пройдет 10 секунд прежде, чем действие произойдет на другой стороне. Без интервала времени в 10 секунд труба не существует в полном объеме.

Дело не в ограниченности наших наблюдений, а в прямом следствии теории относительности, где время и пространство взаимосвязаны, и одно не может существовать без другого.

Квантовая физика дает математическое описание многих вопросов корпускулярно- волнового дуализма и взаимодействия энергии и материи. Она отличается от классической физики, прежде всего, на атомном и субатомном уровне. Эти математические формулировки абстрактны, и их выводы часто неинтуитивны.



Квант - это минимальная единица любой физической сущности, участвующей во взаимодействии. Элементарные частицы – основные компоненты вселенной. Это частицы, из которых состоят все другие частицы. В классической физике мы всегда можем разделить объект на более мелкие части, в квантовой - это невозможно.

Поэтому квантовый мир представляет собой множество уникальных явлений, необъяснимых по классическим законам. Например, квантовая сцепленность , фотоэффект , комптоновское рассеяние и многое другое.








Квантовый мир имеет много необычных интерпретаций. Среди наиболее широко признанных - копенгагенская интерпретация и многомировая интерпретация. В настоящее время набирают силу альтернативные интерпретации, такие как «голографическая вселенная».



Уравнения де Бройля



Хотя квантовая физика и законы относительности Эйнштейна одинаково необходимы для научного понимания вселенной, есть много нерешенных научных проблем и пока нет объединяющей теории.

Некоторые из текущих вопросов: Почему наблюдаемой материи во вселенной больше, чем антиматерии? Какова природа оси времени? Каково происхождение массы?

Одними из важнейших ключей к разгадке этих проблем являются уравнения де Бройля, за которые он был удостоен Нобелевской премии по физике.

Эта формула показывает, что вся материя обладает корпускулярно-волновым дуализмом, то есть, в одних случаях ведет себя как волна, а в других - как частица. Формула сочетает в себе уравнение Эйнштейна E = mc^2 с квантовой природой энергии.



Экспериментальные доказательства включают в себя интерференцию молекул фуллерена C60 в эксперименте с двумя щелями. Тот факт, что само наше сознание состоит из квантовых частиц, является предметом многочисленных мистических теорий.



И хотя отношения между квантовой механикой и сознанием едва ли так волшебны, как утверждают эзотерические фильмы и книги, выводы из этого весьма серьезны.

Так как уравнения де Бройля применяются ко всей материи, мы можем утверждать, что C = hf, где С - сознание, h - постоянная Планка, и f - частота.«С» отвечает за то, что мы воспринимаем как «сейчас», квантовая, то есть минимальная, единица взаимодействия.

Сумма всех моментов «C» вплоть до текущего момента - это то, что формирует наше видение жизни. Это не философское или теоретическое утверждение, а прямое следствие квантовости всей материи и энергии.

Формула показывает, что жизнь и смерть являются абстрактными совокупностями «C».

Другое следствие уравнений де Бройля - в том, что темп колебания материи или энергии и поведение ее как волны или частицы зависит от частоты системы отсчета.

Повышения частоты из-за скорости соотносятся с другими и приводят к таким явлениям, как замедление времени.

Причина этого - в том, что восприятие времени не меняется относительно системы отсчета, где пространство и время - это свойство квантов, а не наоборот.



Антиматерия и невозмущенное время



Большой адронный коллайдер. Швейцария

Античастицы создаются везде во вселенной, где происходят высокоэнергетические столкновения между частицами. Этот процесс искусственно моделируется в ускорителях частиц.

Одновременно с материей создается и антиматерия. Таким образом, недостаток антиматерии во вселенной до сих пор остается одним из крупнейший нерешенных вопросов физики.

Захватывая античастицы электромагнитными полями, мы можем исследовать их свойства. Квантовые состояния частиц и античастиц взаимно заменимы, если применить к ним операторы зарядового сопряжения ©, четности (Р) и обращения времени (Т).

То есть, если некий физик, состоящий из антивещества, будет проводить эксперименты в лаборатории, также из антивещества, используя химические соединения и вещества, состоящие из античастиц, он получит точно такие же результаты, как и его «вещественный» коллега. Но если они объединятся, произойдет огромный выброс энергии, пропорциональный их массе.

Недавно в лаборатории Ферми открыли, что такие кванты как мезоны со скоростью три триллиона раз в секунду переходят из вещества в антивещество и обратно.

Рассматривая вселенную в квантовой системе отсчета «С», необходимо принимать во внимание все экспериментальные результаты, применимые к квантам. Включая то, как материя и антиматерия создаются в ускорителях частиц, и как мезоны переходят из одного состояния в другое.



Применительно к «C» это имеет серьезные последствия. С квантовой точки зрения каждое мгновение «С» имеет и анти-С. Это объясняет отсутствие симметрии, то есть, антивещества во вселенной и также связано с произвольным выбором излучателя и поглотителя в теории поглощения Уилера-Фейнмана.

Невозмущенное время T в принципе неопределенности - это время или цикл, необходимый для существования квантов.

Так же, как в случае мезонов, границей нашего личного восприятия времени, то есть, диапазона текущего момента, является переход «C» в «анти-С». Этот момент самоаннигиляции и его толкование «С» заключен в рамки абстрактной оси времени.



Если определить взаимодействие и рассмотреть основные свойства корпускулярно-волнового дуализма кванта, все взаимодействия состоят из интерференции и резонанса.

Но так как этого не достаточно, чтобы объяснить фундаментальные силы, необходимо использовать различные модели. Это включает стандартную модель, которая выступает посредником между динамикой известных субатомных частиц через носители силы и общей теорией относительности, которая описывает макроскопические явления, такие, как орбиты планет, которые следуют эллипсу в пространстве и спирали в пространстве-времени. Но модель Эйнштейна не применима на квантовом уровне, и стандартная модель нуждается в дополнительных носителях силы, чтобы объяснить происхождение массы. Объединение двух моделей или Теория всего

является предметом многих, пока безуспешных исследований.



Теория всего



Квантовая механика – это чисто математические описания, чьи практические выводы часто противоречат интуиции. Классические понятия, такие, как длина, время, масса и энергия могут быть описаны аналогично.

Опираясь на уравнения де Бройля, мы можем заменить эти понятия на абстрактные векторы. Этот вероятностный подход к основным существующим концепциям в физике позволяет объединить квантовую механику с теорией относительности Эйнштейна.



Уравнения де Бройля показывают, что все системы отсчета являются квантовыми, включая всю материю и энергию. Ускорители частиц показали, что материя и антиматерия всегда создаются одновременно.

Парадокс того, как реальность появляется из абстрактных взаимоуничтожаемых компонентов, можно объяснить, используя кванты в качестве системы отсчета.

Проще говоря, мы должны взглянуть на вещи глазами фотона. Система отсчета всегда является квантовой и определяет, как квантуется пространство-время.

Когда система «увеличивается» или «уменьшается», то же самое происходит с пространством-временем. В квантовой механике это математически описывается как амплитуда вероятности волновой функции, а в теории Эйнштейна - как замедление времени и сокращение длины.

Для квантовой системы отсчета масса и энергия могут быть определены только как абстрактные вероятности или, если быть более конкретными и создать математическую основу - как векторы, существующие только тогда, когда мы предполагаем ось времени. Они могут определяться как интерференция или резонанс с системой отсчета, которая определяет минимальную единицу или пространственно-временную константу «с», эквивалентную постоянной Планка в квантовой механике.

Эксперименты показывают, что преобразование материи в энергию через антиматерию порождает гамма-лучи с противоположным импульсом. То, что кажется преобразованием, является соотношением между противоположными векторами, интерпретируемыми как расстояние и время, материя и антиматерия, масса и энергия, или интерференция и резонанс в пределах абстрактной оси времени «C».

Сумма противоположных векторов всегда равна нулю. Именно это является причиной симметрии или законов сохранения в физике или того, почему при скорости «с» время и пространство равны нулю из-за сокращения длины и замедления времени. Следствием этого является принцип неопределенности Гейзенберга, который утверждает, что некоторые пары физических свойств, например, положение и импульс, нельзя знать одновременно с высокой точностью.



В некотором смысле, отдельная частица является собственным полем. Это не объясняет наше чувство непрерывности, где «С» уничтожает само себя в пределах собственного необходимого диапазона. Но когда эти векторы экспоненциально усилены или ускорены относительно оси времени и в ее пределах, основные математические алгоритмы, описывающие фундаментальные силы, могут породить непрерывную реальность

из абстрактных компонентов.

Поэтому уравнения гармонического движения используются во многих областях физики, касающихся периодических явлений, например, в квантовой механике и электродинамике. И поэтому принцип эквивалентности Эйнштейна, из которого выводится модель пространства-времени, утверждает, что нет никакой разницы между гравитацией и ускорением.

Потому что гравитация является силой только при рассмотрении ее в колеблющейся системе отсчета.

Это иллюстрирует логарифмическая спираль, которая сводится к винтовой спирали в системе отсчета, заставляющей объекты вращаться и двигаться по орбитам. Для примера, два растущих яблока в растущей системе отсчета выглядят, словно они притягивают друг друга, в то время как размер кажется неизменным.

Противоположное возникает при интерференции. Проще говоря, увеличение или уменьшение размера объектов по мере нашего приближения или отдаления определяется смещением системы отсчета, как радио, которое настраивается на различные волны, чтобы поймать радиостанцию.



Это также применимо к силе тяжести. По сути, независимо от любой системы отсчета, фундаментальных сил не существует. Все взаимодействия в нашей абстрактной непрерывности можно математически описать через интерференцию и резонанс, если принята во внимание вечно меняющаяся и колеблющаяся минимальная единица или квант.

Экспериментальное доказательство включает невидимый эффект в стандартной модели, когда мы видим действие сил, но не носители силы.



Квантовая суперпозиция



Непрерывность реальности не требует, чтобы кванты имели последовательность во времени. Квант не является субъектом любого понятия пространства и времени и может одновременно занимать все его возможные квантовые состояния. Это называется квантовой суперпозицией и продемонстрировано, например, в эксперименте с двумя щелями или квантовой телепортации, где каждый электрон во вселенной может быть одним и тем же электроном. Единственное требование для абстрактной оси времени и последовательной непрерывности реальности - это алгоритм описания модели или абстрактная последовательность векторов.

Так как эта непрерывность определяет нашу способность к самосознанию, это подчиняет нас ее математическим следствиям - фундаментальным законам физики.

Взаимодействие - это просто толкование абстрактной модели. Именно поэтому квантовая механика дает только математические описания - она может лишь описать модели внутри бесконечных вероятностей.

Когда вероятность выражается как «C», информация, необходимая для описания текущего момента, или вероятностный диапазон «C», также воплощает собой ось времени. Природа оси времени является одним из крупнейших нерешенных вопросов физики, что привело ко многим новым популярным интерпретациям.

Например, голографический принцип - часть квантовой гравитациии теории струн - предполагает, что всю вселенную можно рассматривать как всего лишь двухмерную информационную структуру.



Время



Мы традиционно связываем понятие оси времени с последовательностью событий, которые мы переживаем через последовательность кратковременных и долговременных воспоминаний. Мы можем иметь воспоминания только о прошлом, но не будущем, и мы всегда полагали, что это отражает течение времени.

Ученые начали сомневаться в этой логике, только когда открытия в квантовой механике продемонстрировали, что некоторые явления не связаны с нашим понятием времени, и что наши представления о времени - всего лишь восприятие изменений наблюдаемых параметров.

Это также отражается в замедлении времени и сокращении длины, что является одной из причин, по которым Эйнштейн установил, что время и пространство - это единая ткань.

В абсолютном смысле, понятие времени не отличается от понятия расстояния.

Секунды равны световым секундам, но взаимно исключают друг друга. Проще говоря: так как расстояние и время противоположны, течение времени можно толковать как расстояние, пройденное стрелками часов, так как они движутся в направлении, противоположном времени.

Двигаясь вперед в расстоянии, они фактически движутся назад в так называемом времени. Именно поэтому каждая минимальная единица опыта немедленно поглощается вечным «сейчас».

Это толкование устраняет разногласие между коллапсом волновой функции и квантовой декогеренцией. Такие понятия, как «жизнь» и «смерть» - это чисто интеллектуальные конструкции. И любые религиозные рассуждения о загробной жизни, происходящей в мире, неподвластном математическим законам этой реальности, также вымышлены.



Еще одно важное следствие - в том, что теория Большого взрыва, где вселенная происходит из одной точки - это недоразумение. Традиционное представление пространства-времени где пространство является трехмерным, а время играет роль четвертого измерения - неправильно. Если мы хотим изучить происхождение вселенной, мы должны смотреть вперед, так как вектор времени «С» противоположен вектору расстояния, с которого мы воспринимаем расширяющуюся вселенную. Хотя эта временнАя карта вселенной даст лишь абстрактные понятия без учета ее квантовой основы.



Экспериментальные доказательства включают ускорение расширения вселенной, а также обратную или регрессивную метрику черных дыр и многие проблемы, связанные

с теорией Большого взрыва, например, проблема горизонта.



Неврологические следствия



Эти умозаключения могут поднимать вопросы о свободной воле, так как кажется, что в нашем восприятии времени сначала происходит действие, а потом осознание.

Большинство исследований, проливающих свет на этот вопрос, показывают, что действие действительно происходит до его осознания. Но детерминистская точка зрения опирается на ошибочное представление о времени, что показывают математические описания вероятности в квантовой механике.



Эти толкования будут важны для будущих неврологических исследований, так как они показывают, что любая нейронная цепь - это вектор, определяющий когнитивный диссонанс и интерференцию или резонанс в «С». Способность понимать и сознательно изменять эти векторы, обретенная за миллиарды лет эволюции, подтверждает, насколько важны наши системы убеждений для расширения нашего осознания, и как они влияют на нашу рабочую память, которая отвечает за нашу способность, устанавливать связи, и за нервные процессы, которые формируют смысл. Это также объясняет, что для искусственного сознания потребуется сеть

независимых процессоров, а не линейная последовательность сложных алгоритмов.



Ограниченное толкование



Единая теория Athene является решением, объединяющим квантовую физику и теорию относительности. Хотя она отвечает на многие вопросы физики, перечисленные здесь, это мое ограниченное толкование первых месяцев его научного исследования.

Независимо от итогов, становится ясно, что мы вступили в эпоху, в которой наука открыта для всех. И если мы сохраним доступность и нейтральность интернета, мы сможем проверить правильность наших идей, развивать наше воображение, создавая новые взаимосвязи, и мы можем продолжить развитие нашего понимания

вселенной и разума.



Эпилог



В квантовой механике мы научились другому подходу к реальности и рассматривать всё, как вероятности, а не как определенности. В математическом смысле всё возможно.

Как в науке, так и в нашей повседневной жизни наша способность вычислять или угадывать вероятности, определяется нашей интеллектуальной способностью распознавать закономерности.

Чем более мы открыты, тем более четко мы можем видеть эти закономерности и основывать свои действия на разумной вероятности.

Так как в саму природу нашего левого полушария заложено отрицание идей, которые не вписываются в наши текущие взгляды, чем более привязаны мы к своим убеждениям, тем менее мы способны сделать сознательный выбор для себя. Но, контролируя этот процесс, мы расширяем свое самосознание и увеличиваем свободную волю.

Говорят, что мудрость приходит с возрастом. Но с открытостью и скептицизмом - ключевыми научными принципами - нам не нужны десятилетия проб и ошибок, чтобы определить, какие из наших убеждений могут быть неправильны.

Вопрос не в том, верны наши убеждения или нет, а в том, принесет пользу или вред наша эмоциональная привязанность к ним.



Свободного выбора не существует, пока мы эмоционально привязаны к системе убеждений. Как только у нас будет достаточно самосознания, чтобы понять это, мы сможем работать вместе, чтобы понять вероятности того, что на самом деле принесет нам наибольшую пользу.

«Развитие квантовой механики подвергло беспрецедентной критике наши классические научные взгляды. Самосознание и готовность пересмотреть свои гипотезы, которые постоянно подвергаются испытанию наукой и человечеством, будут определять степень, в которой мы достигнем более глубокого понимания разума и вселенной.»


Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это .

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» - значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики - слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света - высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.

В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии - 1, 2, 14, 137 раз - и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны - некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».

Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.

Это не всегда очевидно - даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.

Квантовая физика является вероятностной

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция - это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии - состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном - зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Квантовая физика нелокальна

Последний не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х - они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Квантовая физика (почти всегда) связана с очень малым

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект - вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Квантовая физика - не магия


Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.

Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, - бесконечная энергия, волшебная целительная сила, невозможные космические двигатели - это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.

Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения.

#Вселенная #Физика #Квантовая механика #Наука #Сознание

Глава 2

Вселенская структура

За время исследований Чирена я сделал упрощенный, но всесторонний обзор его текущих результатов.

Это одна из интерпретаций работы по объединению квантовой физики и теории относительности .

Данная тема сложна, и, возможно, будет трудна для понимания. Также она содержит некоторые философские выводы, которые будут затронуты в эпилоге.

За последнее столетие было много поразительных достижений, которые привели к изменению научной системы понимания мира. Теория относительности Эйнштейна показала, что время и пространство образуют единую ткань. А Нильс Бор выявил базовые компоненты вещества, благодаря квантовой физике - области, которая существует только как "абстрактное физическое описание".

После этого Луи де Бройль открыл, что всё вещество, а не только фотоны и электроны, обладает квантовым корпускулярно- волновым дуализмом . Эти привело к появлению новых школ мысли о природе реальности, а также популярных метафизических и псевдонаучных теорий.

Например, что человеческий разум может управлять вселенной через позитивное мышление. Эти теории привлекательны, но они не поддаются проверке и могут препятствовать научному прогрессу.

Законы специальной и общей теории относительности Эйнштейна применяются в современных технологиях, например, спутниках GPS, где точность расчетов может отклоняться более чем на 10 км в день, если не учесть такие последствия, как замедление времени. То есть, для движущихся часов время идет медленнее, чем для неподвижных.

Другие эффекты теории относительности - это сокращение длины для движущихся объектов и относительность одновременности, из-за чего невозможно с точностью утверждать, что два события происходят в одно и то же время, если они разделены в пространстве. Ничто не движется быстрее скорости света. Это означает, что если трубу длиной 10 световых секунд толкнуть вперед, пройдет 10 секунд прежде, чем действие произойдет на другой стороне. Без интервала времени в 10 секунд труба не существует в полном объеме. Дело не в ограниченности наших наблюдений, а в прямом следствии теории относительности, где время и пространство взаимосвязаны, и одно не может существовать без другого.

Квантовая физика дает математическое описание многих вопросов корпускулярно- волнового дуализма и взаимодействия энергии и материи. Она отличается от классической физики, прежде всего, на атомном и субатомном уровне. Эти математические формулировки абстрактны, и их выводы часто неинтуитивны.

Квант - это минимальная единица любой физической сущности, участвующей во взаимодействии. Элементарные частицы – основные компоненты вселенной. Это частицы, из которых состоят все другие частицы. В классической физике мы всегда можем разделить объект на более мелкие части, в квантовой - это невозможно. Поэтому квантовый мир представляет собой множество уникальных явлений, необъяснимых по классическим законам. Например, квантовая сцепленность , фотоэффект , комптоновское рассеяние и многое другое.

Квантовый мир имеет много необычных интерпретаций. Среди наиболее широко признанных - копенгагенская интерпретация и многомировая интерпретация. В настоящее время набирают силу альтернативные интерпретации, такие как "голографическая вселенная".

Уравнения де Бройля

Хотя квантовая физика и законы относительности Эйнштейна одинаково необходимы для научного понимания вселенной, есть много нерешенных научных проблем и пока нет объединяющей теории.

Некоторые из текущих вопросов: Почему наблюдаемой материи во вселенной больше, чем антиматерии? Какова природа оси времени? Каково происхождение массы?

Одними из важнейших ключей к разгадке этих проблем являются уравнения де Бройля, за которые он был удостоен Нобелевской премии по физике. Эта формула показывает, что вся материя обладает корпускулярно-волновым дуализмом, то есть, в одних случаях ведет себя как волна, а в других - как частица. Формула сочетает в себе уравнение Эйнштейна E = mc^2 с квантовой природой энергии.

Экспериментальные доказательства включают в себя интерференцию молекул фуллерена C60 в эксперименте с двумя щелями.

Тот факт, что само наше сознание состоит из квантовых частиц, является предметом многочисленных мистических теорий. И хотя отношения между квантовой механикой и сознанием едва ли так волшебны, как утверждают эзотерические фильмы и книги, выводы из этого весьма серьезны. Так как уравнения де Бройля применяются ко всей материи, мы можем утверждать, что C = hf, где С - сознание, h - постоянная Планка, и f - частота."С" отвечает за то, что мы воспринимаем как "сейчас",квантовая, то есть минимальная, единица взаимодействия.

Сумма всех моментов "C" вплоть до текущего момента - это то, что формирует наше видение жизни. Это не философское или теоретическое утверждение, а прямое следствие квантовости всей материи и энергии. Формула показывает, что жизнь и смерть являются абстрактными совокупностями "C".

Другое следствие уравнений де Бройля - в том, что темп колебания материи или энергии и поведение ее как волны или частицы зависит от частоты системы отсчета. Повышения частоты из-за скорости соотносятся с другими и приводят к таким явлениям, как замедление времени. Причина этого - в том, что восприятие времени не меняется относительно системы отсчета, где пространство и время - это свойство квантов, а не наоборот.

Антиматерия и невозмущенное время

Большой адронный коллайдер. Швейцария.

Античастицы создаются везде во вселенной, где происходят высокоэнергетические столкновения между частицами. Этот процесс искусственно моделируется в ускорителях частиц. Одновременно с материей создается и антиматерия. Таким образом, недостаток антиматерии во вселенной до сих пор остается одним из крупнейший нерешенных вопросов физики.

Захватывая античастицы электромагнитными полями, мы можем исследовать их свойства. Квантовые состояния частиц и античастиц взаимно заменимы, если применить к ним операторы зарядового сопряжения (С), четности (Р) и обращения времени (Т).

То есть, если некий физик, состоящий из антивещества, будет проводить эксперименты в лаборатории, также из антивещества, используя химические соединения и вещества, состоящие из античастиц, он получит точно такие же результаты, как и его "вещественный" коллега. Но если они объединятся, произойдет огромный выброс энергии, пропорциональный их массе.

Недавно в лаборатории Ферми открыли, что такие кванты как мезоны со скоростью три триллиона раз в секунду переходят из вещества в антивещество и обратно.

Рассматривая вселенную в квантовой системе отсчета "С", необходимо принимать во внимание все экспериментальные результаты, применимые к квантам. Включая то, как материя и антиматерия создаются в ускорителях частиц, и как мезоны переходят из одного состояния в другое.

Применительно к "C" это имеет серьезные последствия. С квантовой точки зрения каждое мгновение "С" имеет и анти-С. Это объясняет отсутствие симметрии, то есть, антивещества во вселенной и также связано с произвольным выбором излучателя и поглотителя в теории поглощения Уилера-Фейнмана.

Невозмущенное время T в принципе неопределенности - это время или цикл, необходимый для существования квантов.

Так же, как в случае мезонов, границей нашего личного восприятия времени, то есть, диапазона текущего момента, является переход "C" в "анти-С". Этот момент самоаннигиляции и его толкование "С" заключен в рамки абстрактной оси времени.

Если определить взаимодействие и рассмотреть основные свойства корпускулярно-волнового дуализма кванта, все взаимодействия состоят из интерференции и резонанса.

Но так как этого не достаточно, чтобы объяснить фундаментальные силы, необходимо использовать различные модели. Это включает стандартную модель, которая выступает посредником между динамикой известных субатомных частиц через носители силы и общей теорией относительности, которая описывает макроскопические явления, такие, как орбиты планет, которые следуют эллипсу в пространстве и спирали в пространстве-времени. Но модель Эйнштейна не применима на квантовом уровне, и стандартная модель нуждается в дополнительных носителях силы, чтобы объяснить происхождение массы. Объединение двух моделей или Теория всего является предметом многих, пока безуспешных исследований.

Теория всего

Квантовая механика – это чисто математические описания, чьи практические выводы часто противоречат интуиции. Классические понятия, такие, как длина, время, масса и энергия могут быть описаны аналогично.

Опираясь на уравнения де Бройля, мы можем заменить эти понятия на абстрактные векторы. Этот вероятностный подход к основным существующим концепциям в физике позволяет объединить квантовую механику с теорией относительности Эйнштейна.

Уравнения де Бройля показывают, что все системы отсчета являются квантовыми, включая всю материю и энергию. Ускорители частиц показали, что материя и антиматерия всегда создаются одновременно.

Парадокс того, как реальность появляется из абстрактных взаимоуничтожаемых компонентов, можно объяснить, используя кванты в качестве системы отсчета.

Проще говоря, мы должны взглянуть на вещи глазами фотона. Система отсчета всегда является квантовой и определяет, как квантуется пространство-время.

Когда система "увеличивается" или "уменьшается", то же самое происходит с пространством-временем. В квантовой механике это математически описывается как амплитуда вероятности волновой функции, а в теории Эйнштейна - как замедление времени и сокращение длины.

Для квантовой системы отсчета масса и энергия могут быть определены только как абстрактные вероятности или, если быть более конкретными и создать математическую основу - как векторы, существующие только тогда, когда мы предполагаем ось времени. Они могут определяться как интерференция или резонанс с системой отсчета, которая определяет минимальную единицу или пространственно-временную константу "с", эквивалентную постоянной Планка в квантовой механике.

Эксперименты показывают, что преобразование материи в энергию через антиматерию порождает гамма-лучи с противоположным импульсом. То, что кажется преобразованием, является соотношением между противоположными векторами, интерпретируемыми как расстояние и время, материя и антиматерия, масса и энергия, или интерференция и резонанс в пределах абстрактной оси времени "C".

Сумма противоположных векторов всегда равна нулю. Именно это является причиной симметрии или законов сохранения в физике или того, почему при скорости "с" время и пространство равны нулю из-за сокращения длины и замедления времени. Следствием этого является принцип неопределенности Гейзенберга, который утверждает, что некоторые пары физических свойств, например, положение и импульс, нельзя знать одновременно с высокой точностью.

В некотором смысле, отдельная частица является собственным полем. Это не объясняет наше чувство непрерывности, где "С" уничтожает само себя в пределах собственного необходимого диапазона. Но когда эти векторы экспоненциально усилены или ускорены относительно оси времени и в ее пределах, основные математические алгоритмы, описывающие фундаментальные силы, могут породить непрерывную реальность из абстрактных компонентов.

Поэтому уравнения гармонического движения используются во многих областях физики, касающихся периодических явлений, например, в квантовой механике и электродинамике. И поэтому принцип эквивалентности Эйнштейна, из которого выводится модель пространства-времени, утверждает, что нет никакой разницы между гравитацией и ускорением.

Потому что гравитация является силой только при рассмотрении ее в колеблющейся системе отсчета.

Это иллюстрирует логарифмическая спираль, которая сводится к винтовой спирали в системе отсчета, заставляющей объекты вращаться и двигаться по орбитам. Для примера, два растущих яблока в растущей системе отсчета выглядят, словно они притягивают друг друга, в то время как размер кажется неизменным.

Противоположное возникает при интерференции. Проще говоря, увеличение или уменьшение размера объектов по мере нашего приближения или отдаления определяется смещением системы отсчета, как радио, которое настраивается на различные волны, чтобы поймать радиостанцию.

Это также применимо к силе тяжести. По сути, независимо от любой системы отсчета, фундаментальных сил не существует. Все взаимодействия в нашей абстрактной непрерывности можно математически описать через интерференцию и резонанс, если принята во внимание вечно меняющаяся и колеблющаяся минимальная единица или квант.

Экспериментальное доказательство включает невидимый эффект в стандартной модели, когда мы видим действие сил, но не носители силы.

Квантовая суперпозиция

Непрерывность реальности не требует, чтобы кванты имели последовательность во времени. Квант не является субъектом любого понятия пространства и времени и может одновременно занимать все его возможные квантовые состояния. Это называется квантовой суперпозицией и продемонстрировано, например, в эксперименте с двумя щелями или квантовой телепортации, где каждый электрон во вселенной может быть одним и тем же электроном. Единственное требование для абстрактной оси времени и последовательной непрерывности реальности - это алгоритм описания модели или абстрактная последовательность векторов.

Так как эта непрерывность определяет нашу способность к самосознанию, это подчиняет нас ее математическим следствиям - фундаментальным законам физики.

Взаимодействие - это просто толкование абстрактной модели. Именно поэтому квантовая механика дает только математические описания - она может лишь описать модели внутри бесконечных вероятностей.

Когда вероятность выражается как "C", информация, необходимая для описания текущего момента, или вероятностный диапазон "C",также воплощает собой ось времени. Природа оси времени является одним из крупнейших нерешенных вопросов физики, что привело ко многим новым популярным интерпретациям.

Например, голографический принцип - часть квантовой гравитациии теории струн - предполагает, что всю вселенную можно рассматривать как всего лишь двухмерную информационную структуру.

Время

Мы традиционно связываем понятие оси времени с последовательностью событий, которые мы переживаем через последовательность кратковременных и долговременных воспоминаний. Мы можем иметь воспоминания только о прошлом, но не будущем, и мы всегда полагали, что это отражает течение времени.

Ученые начали сомневаться в этой логике, только когда открытия в квантовой механике продемонстрировали, что некоторые явления не связаны с нашим понятием времени, и что наши представления о времени - всего лишь восприятие изменений наблюдаемых параметров.

Это также отражается в замедлении времени и сокращении длины, что является одной из причин, по которым Эйнштейн установил, что время и пространство - это единая ткань.

В абсолютном смысле, понятие времени не отличается от понятия расстояния.

Секунды равны световым секундам, но взаимно исключают друг друга. Проще говоря: так как расстояние и время противоположны, течение времени можно толковать как расстояние, пройденное стрелками часов, так как они движутся в направлении, противоположном времени.

Двигаясь вперед в расстоянии, они фактически движутся назад в так называемом времени. Именно поэтому каждая минимальная единица опыта немедленно поглощается вечным "сейчас".

Это толкование устраняет разногласие между коллапсом волновой функции и квантовой декогеренцией. Такие понятия, как "жизнь" и "смерть" - это чисто интеллектуальные конструкции. И любые религиозные рассуждения о загробной жизни, происходящей в мире, неподвластном математическим законам этой реальности, также вымышлены.

Еще одно важное следствие - в том, что теория Большого взрыва, где вселенная происходит из одной точки - это недоразумение. Традиционное представление пространства-времени где пространство является трехмерным, а время играет роль четвертого измерения - неправильно. Если мы хотим изучить происхождение вселенной, мы должны смотреть вперед, так как вектор времени "С" противоположен вектору расстояния, с которого мы воспринимаем расширяющуюся вселенную. Хотя эта временнАя карта вселенной даст лишь абстрактные понятия без учета ее квантовой основы.

Экспериментальные доказательства включают ускорение расширения вселенной, а также обратную или регрессивную метрику черных дыр и многие проблемы, связанные

с теорией Большого взрыва, например, проблема горизонта.

Неврологические следствия

Эти умозаключения могут поднимать вопросы о свободной воле, так как кажется, что в нашем восприятии времени сначала происходит действие, а потом осознание.

Большинство исследований, проливающих свет на этот вопрос, показывают, что действие действительно происходит до его осознания. Но детерминистская точка зрения опирается на ошибочное представление о времени, что показывают математические описания вероятности в квантовой механике.

Эти толкования будут важны для будущих неврологических исследований, так как они показывают, что любая нейронная цепь - это вектор, определяющий когнитивный диссонанс и интерференцию или резонанс в "С". Способность понимать и сознательно изменять эти векторы, обретенная за миллиарды лет эволюции, подтверждает, насколько важны наши системы убеждений для расширения нашего осознания, и как они влияют на нашу рабочую память, которая отвечает за нашу способность, устанавливать связи, и за нервные процессы, которые формируют смысл. Это также объясняет, что для искусственного сознания потребуется сеть

независимых процессоров, а не линейная последовательность сложных алгоритмов.

Ограниченное толкование

Единая теория Athene является решением, объединяющим квантовую физику и теорию относительности. Хотя она отвечает на многие вопросы физики, перечисленные здесь, это мое ограниченное толкование первых месяцев его научного исследования.

Независимо от итогов, становится ясно, что мы вступили в эпоху, в которой наука открыта для всех. И если мы сохраним доступность и нейтральность интернета, мы сможем проверить правильность наших идей, развивать наше воображение, создавая новые взаимосвязи, и мы можем продолжить развитие нашего понимания

вселенной и разума.

Эпилог

В квантовой механике мы научились другому подходу к реальности и рассматривать всё, как вероятности, а не как определенности. В математическом смысле всё возможно.

Как в науке, так и в нашей повседневной жизни наша способность вычислять или угадывать вероятности, определяется нашей интеллектуальной способностью распознавать закономерности.

Чем более мы открыты, тем более четко мы можем видеть эти закономерности и основывать свои действия на разумной вероятности.

Так как в саму природу нашего левого полушария заложено отрицание идей, которые не вписываются в наши текущие взгляды, чем более привязаны мы к своим убеждениям, тем менее мы способны сделать сознательный выбор для себя. Но, контролируя этот процесс, мы расширяем свое самосознание и увеличиваем свободную волю.

Говорят, что мудрость приходит с возрастом. Но с открытостью и скептицизмом - ключевыми научными принципами - нам не нужны десятилетия проб и ошибок, чтобы определить, какие из наших убеждений могут быть неправильны.

Вопрос не в том, верны наши убеждения или нет, а в том, принесет пользу или вред наша эмоциональная привязанность к ним.

Свободного выбора не существует, пока мы эмоционально привязаны к системе убеждений. Как только у нас будет достаточно самосознания, чтобы понять это, мы сможем работать вместе, чтобы понять вероятности того, что на самом деле принесет нам наибольшую пользу.

"Развитие квантовой механики подвергло беспрецедентной критике наши классические научные взгляды. Самосознание и готовность пересмотреть свои гипотезы, которые постоянно подвергаются испытанию наукой и человечеством, будут определять степень, в которой мы достигнем более глубокого понимания разума и вселенной."


Top