Нитриловые перчатки. Откуда взялся нитрил, что это такое и как правильно его использовать? Нитрилы карбоновых кислот Как из кислоты получить нитрил

Нитрилы называют различными способами:

CH 3 CN CH 2 =CHCN PhCN NC(CH 2) 4 CN

этаннитрил пропеннитрил бензолкарбонитрил адипонитрил

(ацетонитрил) (акрилонитрил) (бензонитрил)

Способы получение нитрилов

3.1.1. Получение нитрилов дегидратацией амидов

Дегидратация амидов, о которой мы говорили в предыдущем разделе может служить последней стадией в цепи превращений карбоновой кислоты в нитрил этой кислоты:

Все эти реакции часто совмещают в одном процессе, пропуская смесь карбоновой кислоты и аммиака через окись алюминия при 500 о С:

Упр.46. Напишите реакцию промышленного метода получения адипонитрила из адипиновой кислоты.

3.1.2. Получение нитрилов окислительным аммонолизом углеводородов

При изучении окисления углеводородов мы видели, что синильную кислоту (нитрил муравьиной кислоты) и нитрилы других кислот получают окислительным аммонолизом соответствующих углеводородов по схеме:

Упр.47. Напишите реакции получения (а) акрилонитрила, (б) бензонитрила, (в) ацетонитрила и (г) нитрила терефталевой кислоты окислительным амонолизом соответствующих углеводородов.

3.1.3. Получение нитрилов по реакции Кольбе

При взаимодействии галогенуглеводородов с цианидом калия в водном этаноле по механизму S N 2 образуются нитрилы:

Поскольку цианид-анион является амбидентным ионом, в качестве побочного продукта образуются изонитрилы, которые удаляют встряхивая реакционную смесь с разбавленной соляной кислотой.

Упр.48. Напишите реакции получения через соответствующие галогенуглеводо-роды (а) пропионитрила из этилена, (б) бутиронитрила из пропилена, (в) динитрила янтарной кислоты из этилена, (г) нитрила винилуксусной кислоты из пропилена, (д) нитрила фенилуксусной кислоты из толуола, (е) динитрила адипиновой кислоты из ацетилена.

Упр.49. Завершите реакции:

Реакции нитрилов

3.2.1. Гидрирование нитрилов

Нитрилы легко гидрируются в амины. Гидрирование осуществляется или водородом в момент выделения (С 2 Н 5 ОН + Na) или каталитически:

Упр.50. Напишите реакции гидрирования (а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

3.2.2. Гидролиз нитрилов

Нитрилы, получаемые из алкилгалогенидов и цианидов металлов по реакции нуклеофильного замещения, являются хорошими исходными продуктами для получения карбоновых кислот. Для этого их подвергают гидролизу в присутствии кислот или оснований:


Упр.51. Какие кислоты образуются при гидролизе следующих нитрилов:

(а) пропионитрила, (б) бутиронитрила, (в) динитрила янтарной кислоты, (г) нитрила винилуксусной кислоты, (д) нитрила фенилуксусной кислоты, (е) динитрила адипиновой кислоты.

По этой схеме из доступного бензилхлорида получают фенилуксусную кислоту:


Упр.52. Предложите схему получения фенилуксусной кислоты исходя из толуола. Опишите механизмы соответствующих реакций.

Малоновую кислоту главным образом получают из хлоруксусной кислоты по схеме:

Упр.53. Исходя из этилена и других необходимых реагентов, предложите схему получения бутандиовой (янтарной) кислоты.

Упр.54. Через соответствующие галогенуглеводороды и нитрилы предложите схемы получения следующих кислот: (а) пропионовой из этилена, (б) масляной из пропилена, (в) янтарной кислоты из этилена, (г) винилуксусной кислоты из пропилена, (д) фенилуксусной кислоты из толуола, (е) адипиновой кислоты из ацетилена.

Из доступных циангидринов получают -оксикислоты:

Упр.55. Исходя из соответствующих альдегидов и кетонов и других необходимых реагентов, предложите схемы получения (а) 2-гидроксиоксипропионовой кислоты и

(б) 2-метил-2-гидроксипропионовой кислоты.

Алкоголиз нитрилов

Нитрилы взаимодействуя с хлороводородом превращаются в иминохлориды:

иминохлорид

Действие на нитрилы хлороводорода в спирте приводит к образованию гидрохлоридов иминоэфиров, дальнейший гидролиз которых дает эфиры:

Метилметакрилат в промышленности получают из ацетона через циангидрин:

ацетон ацетонциангидрин метилметакрилат

Полимер метилметакрилата - полиметилметакрилат используется в изготовлении безосколочных стекол (плексиглас).

Упр. 56. Какой продукт образуется в результате последовательного действия на бензилхлорид цианида калия, этанола в присутствии хлороводорода и наконец водой? Напишите соответствующие реакции.

Упр. 57. Какой продукт образуется в результате последовательного действия на ацетальдегид синильной кислоты, а затем метанола в присутствии серной кислоты? Напишите соответствующие реакции.

1. Гидролиз (кислотный и щелочной)

Проходит в наиболее жестких условиях, причем в отличие от всех производных кислот в один или два этапа, промежуточным соединениями являются амиды. При эквимольном соотношении нитрила и воды можно остановить реакцию на стадии образования амида. Обычно реакцию ведут с избытком воды, получают карбоновые кислоты (кислый гидролиз) или их соли (щелочной гидролиз) и аммиак.

а) кислый гидролиз

б) щелочной гидролиз

2. Алкоголиз нитрилов – синтез сложных эфиров. Реакция идет в два этапа через образование нестабильных иминоэфиров, гидролиз которых приводит к сложным эфирам.

3. Восстановление нитрилов – синтез первичных аминов.

Контрольные вопросы к главе «ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ И ИХ ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ»

1. Напишите структурные формулы кислот: а) пропионовой; б) масляной; в) -метилмасляной; г) валериановой; д) капроновой. Назовите их по международной номенклатуре.

2. Приведите структурные формулы кислот: а) диметилпропановой; б) 3-метилбутановой; в) 4-метил-2-этилпентановой; г) 2,2,3-триметилбутановой; д) 3,5-диметил-4-этилгексановой. Дайте этим соединениям другие названия.

3. Какое строение имеют следующие кислоты: а) акриловая; б) кротоновая; в) винилуксусная? Назовите их по международной номенклатуре. Для какой кислоты возможна цис - итранс- изомерия?

4. Какую группу атомов называют кислотным остатком или ацилом? Приведите ацилы, соответствующие следующим кислотам: а) муравьиной; б) уксусной; в) пропионовой; г) масляной. Назовите их.

5. Обьясните, почему: а) уксусная кислота кипит при более высокой температуре, чем этиловый спирт (т.кип. 118C и 78C соответственно); б) низшие кислоты хорошо растворимы в воде; в) температура плавления щавелевой кислоты существенно выше, чем у уксусной кислоты (т.пл. 189C и 16,5C соответственно); г) дикарбоновые кислоты не обладают неприятным запахом, характерным для низкомолекулярных монокарбоновых кислот.

6. С помощью индуктивного и мезомерных эффектов обьясните влияние карбоксильной группы на углеводородный остаток в кислотах: а) пропионовой; б) акриловой; в) винилуксусной. Укажите в радикале наиболее активные атомы водорода, отметьте дробными зарядами распределение -электронной плотности.

7. Обьясните изменения кислотности в приведенных ниже рядах:

8. Какая кислота в каждой паре более сильная и почему: а) муравьиная и уксусная; б) уксусная и триметилуксусная; в) -хлормасляная и-хлормасляная; г) пропионовая и акриловая.

9. Напишите уравнения реакций пропионовой кислоты с указанными реагентами: а) Zn; б) NaOH; в) NaHСO 3 ; г) NН 4 OH; д) Са(ОН) 2 . Какое свойство пропионовой кислоты проявляется в этих реакциях? Назовите полученные соединения. Какие из этих реакций применяются для качественного обнаружения карбоксильной группы в органических соединениях?

10. Напишите схему этерификации пропионовой кислоты метиловым спиртом в присутствии серной кислоты. Приведите механизм.

11. Приведите схемы кислотного и щелочного гидролиза этилпропионата. Обьясните, почему щелочи катализируют только гидролиз сложных эфиров, но не их образование.

12. Напишите схемы реакций:

Назовите продукты. Что получится, если на образовавшиеся соединения подействовать этиловым спиртом, диметиламином? Приведите уравнения последних реакций, рассмотрите механизм одной из них.

13. Напишите схему и механизм реакции ацетата натрия с хлористым ацетилом, хлористым пропионилом. Что получится, если уксусный ангидрид нагреть с пропиловым спиртом? Приведите схему и механизм этого превращения.

14. Назовите соединения, являющиеся продуктами следующих реакций:

Сравните осно́вные свойства продуктов с исходными аминами.

15. Какой химический процесс называют ацилированием? Приведите примеры реакций N- и О-ацилирования. Сопоставьте ацилирующую способность следующих соединений: а) СН 3 СН 2 СOOH; б) СН 3 СН 2 СОСl; в) СН 3 СН 2 СООСН 3 ; г) (СН 3 СН 2 СО) 2 O; д) СН 3 СН 2 СОNН 2 . Какие функциональные произодные кислот являются наиболее сильными ацилирующими реагентами?

16. Напишите схему гидролиза производных масляной кислоты: а) хлорангидрида; б) ангидрида; в) сложного эфира; г) амида. Обьясните каталитическое действие кислот и оснований в этом процессе.

17. Какие соединения образуются при действии на этилацетат следующих реагентов: а) Н 2 О (Н + ); б) Н 2 О (NaOH); в) СН 3 ОН (Н + ); г) СН 3 СН 2 СН 2 ОН (кат. RO); д) NН 3 , t ; e) LiAlН 4 (эфир), затем Н 2 О? Приведите полные уравнения реакций.

18. Сравните основные и кислотные свойства соединений: а) этиламина; б) ацетамида; в) N,N -диметиацетамида. Дайте обьяснения имеющимся отличиям. Напишите реакции этих соединений сHCl в эфире иNaNН 2 в 3 , если есть взаимодействие.

19. Назовите соединения, образующиеся из амида масляной кислоты со следующими реагентами: а) Н 2 О (Н + ); б) Br 2 +KOH; в) LiAlH 4 (эфир), затем Н 2 О; г) Р 2 О 5 , t ; д) НNO 2 2 О).

20.Напишите схемы взаимодействия нитрила изомасляной кислоты с указанными реагентами: а) Н 2 О, Н + , t ; б) CН 3 СН 2 MgBr, затем Н 2 О; в) LiAlН 4 . Назовите продукты реакций.

21. Напишите реакции акриловой кислоты со следующими соединениями: а) Na 2 СO 3 ; б) СН 3 СН 2 ОН (Н + ); в) SOСl 2 ; г) НBr; д) Br 2 . Приведите механизм реакции сHBr .

22. Для каждой пары соединений приведите химическую реакцию, позволяющие отличить эти соединения: а) НСООН и СН 3 СООН; б) СН 3 СООН и СН 3 СООС 2 Н 5 ; в) СН 3 СН 2 СООН и СН 2 =СНCOOH; г) СН 2 =СНCOOH и НС СCOOH; д) СН 3 СОN(СН 3 ) 2 и (СН 3 СН 2 ) 3 N; е) СН 3 СОNН 2 и СН 3 СООNН 4 .

23. Напишите уравнения реакций. Назовите исходные и конечные соединения:

24. Назовите кислоты, являющиеся продуктами следующих реакций:

25. Приведите схемы получения изомасляной кислоты из соответствующих соединений указанными методами: а) окислением спирта; б) гидролизом нитрила; в) реакцией Гриньяра; г) алкилированием малонового эфира.

26. Получите пропионовую кислоту из следующих соединений: а) пропанола-1; б) пропена; в) бромистого этила.

27. Напишите схемы получения из пропионовой кислоты её производных: а) натриевой соли; б) кальциевой соли; в) хлорангидрида; г) амида; д) нитрила; е) ангидрида; ж) этилового эфира.

28. Назовите соединения и приведите схемы их синтеза из соответствующих кислот: а) СН 3 СН 2 СООСН 3 ; б) (СН 3 ) 2 СНСОNН 2 ; в) СН 3 СН 2 СН 2 СN .

29. Заполните схемы превращений. Назовите все полученные соединения:

30. Действием каких реагентов и в каких условиях можно осуществить указанные превращения (все соединения назовите).

нитрилы
Нитри́лы - органические соединения общей формулы R-C≡N, формально являющиеся C-замещенными производными синильной кислоты HC≡N.
  • 1 Номенклатура
  • 2 Строение нитрильной группы
  • 3 Физические и химические свойства
  • 4 Получение
  • 5 Воздействие на организм человека
  • 6 Применение
  • 7 Примечания
  • 8 Литература
  • 9 См. также

Номенклатура

Нитрилы также часто рассматривают как производные карбоновых кислот (продукты дегидратации амидов) и именуют как производные соответствующих карбоновых кислот, например, CH3C≡N - ацетонитрил (нитрил уксусной кислоты), C6H5CN - бензонитрил (нитрил бензойной кислоты). систематической номенклатуре для именования нитрилов используется суффикс карбонитрил, например, пиррол-3-карбонитрил.

Нитрилы, в которых группа -C≡N подвижна либо имеет псевдогалогенный характер обычно называют цианидами, например, C6H5CH2CN - бензилцианид, C6H5COCN - бензоилцианид, (CH3)3SiCN - триметилсилилцианид.

Строение нитрильной группы

Атомы азота и углерода в нитрильной группе находятся в состоянии sp-гибридизации. Длина тройной связи C≡N составляет 0,116 нм, длина связи R-CN 0,1468 нм (для CH3CN). Нитрильная группа обладает отрицательными мезомерным и индукционным эффектами, в частности, константы Гаммета σM = 0,56; σn = 0,66; σn- = 1,00; σn+ = 0,659, а индуктивная константа Тафта σ* = 3,6.

Электронное строение нитрилов можно изобразить в виде двух резонансных структур:

В ИК-спектрах и спектрах комбинационного рассеяния нитрильная группа имеет полосу поглощения в районе 222-2270 см-1.

Физические и химические свойства

Нитрилы являются жидкими или твёрдыми веществами. Они растворяются в органических растворителях. Низшие нитрилы хорошо растворяются в воде, но с увеличением их молярной массы растворимость в воде падает.

Нитрилы способны вступать в реакции как с электрофильными реагентами по атому азота, так и с нуклеофильными реагентами по атому углерода, что обусловлено резонансной структурой нитрильной группы. Неподелённая электронная пара на атоме азота способствует образованию комплексов нитрилов с солями металлов, например, с CuCl, NiCl2, SbCl5. Наличие нитрильной группы приводит к снижению энергии диссоциации связи C-H у α-углеродного атома. Связь C≡N способна присоединять другие атомы и группы.

Гидролиз нитрилов в кислой среде приводит сначала к амидам, потом - к соответствующим карбоновым кислотам:

Гидролиз нитрилов в щелочной среде даёт соли карбоновых кислот.

Реакция нитрилов с пероксидом водорода (реакция Радзишевского) приводит к амидам:

Взаимодействие нитрилов со спиртами в присутствии кислотных катализаторов (реакция Пиннера) позволяет получать гидрогалогениды имидоэфиров, которые далее гидролизуются до сложных эфиров. Взаимодействие с тиолами в аналогичной реакции приводит соответственно к солям тиоимидатов и эфирам тиокарбоновых кислот:

При действии на нитрилы сероводорода образуются тиоамиды RC(S)NH2, при действии аммиака, первичных и вторичных аминов - амидины RC(NHR")=NH, при действии гидроксиламина - амидоксимы RC(NH2)=NOH, при действии гидразона - амидогидразоны RC(NH2)=NNH2.

Реакция нитрилов с реактивами Гриньяра даёт N-магнийзамещённые кетимины, которые в кислой среде гидролизуются до кетонов:

Нитрилы реагируют с ненасыщенными соединениями (реакция Риттера) с образованием замещённых амидов:

С диенами вступают в реакцию Дильса-Альдера:

Восстановление нитрилов идёт постадийно до образования первичных аминов. Чаще всего реакцию проводят водородом на платиновом, палладиевом (при 1-3 атм. 20-50 °C) или никелевом, кобальтовом катализаторах (100-250 атм., 100-200 °C) в присутствии аммиака. лабораторных условиях нитрилы восстанавливают натрием в этаноле, алюмогидридом калия и борогидридом натрия:

Реакция нитрилов с карбонильными соединениями по Кнёвенагелю ведёт к цианоалкенам:

Получение

Нитрилы получают следующими способами:

Дегидратацией амидов, альдоксимов, аммониевых солей карбоновых кислот Алкилированием солей синильной кислоты По реакции Зандмейера Присоединением синильной кислоты (используется в промышленности) Совместным окислением аммиака и углеводородов (окислительный аммонолиз)

Реакция протекает при 400-500 °C, катализаторами служат молибдаты и фосфомолибдаты висмута, молибдаты и вольфраматы церия и др.:

Окислением аминов

Воздействие на организм человека

Нитрилы ядовиты для человека вследствие нарушения действия цитохромоксидазы и угнетения функции переноса кислорода из крови к клеткам. Токсическое действие проявляется как при вдыхании паров нитрилов, так и при попадании в организм через кожу или желудочно-кишечный тракт.

Противоядиями служат амилнитрит, тиосульфат натрия и глюкоза.

Применение

Нитрилы используются в качестве растворителей, инициаторов радикально-цепной полимеризации, сырья для получения мономеров, лекарственных средств, пестицидов, пластификаторов. Имеют широкое применение в реакции Риттера как нуклеофильный реагент.

Наибольшее значение имеют ацетонитрил (растворитель, адсорбент при выделении бутадиена из смеси с бутенами), акрилонитрил (мономер для получения синтетического волокна), адиподинитрил (сырьё для синтеза адипиновой кислоты, капролактама, гексаметилендиамина), бензонитрил.

Примечания

В Викисловаре есть статья «нитрил»
  1. nitriles // IUPAC Gold Book
  2. carbonitriles // IUPAC Gold Book

Литература

См. также

  • Аминонитрилы
  • Изонитрилы
  1. Зильберман Е.Н. Реакции нитрилов. - Москва: Химия, 1972. - 448 с.

Материал из Википедии - свободной энциклопедии

Нитри́лы - органические соединения общей формулы R-C≡N, формально являющиеся C-замещенными производными синильной кислоты HC≡N .

Номенклатура

Нитрилы также часто рассматривают как производные карбоновых кислот (продукты дегидратации амидов) и именуют как производные соответствующих карбоновых кислот, например, CH 3 C≡N - ацетонитрил (нитрил уксусной кислоты), C 6 H 5 CN - бензонитрил (нитрил бензойной кислоты). В систематической номенклатуре для именования нитрилов используется суффикс карбонитрил , например, пиррол-3-карбонитрил.

Нитрилы, в которых группа -C≡N подвижна либо имеет псевдогалогенный характер обычно называют цианидами, например, C 6 H 5 CH 2 CN - бензилцианид, C 6 H 5 COCN - бензоилцианид, (CH 3) 3 SiCN - триметилсилилцианид.

Строение нитрильной группы

Атомы азота и углерода в нитрильной группе находятся в состоянии sp-гибридизации. Длина тройной связи C≡N составляет 0,116 нм, длина связи R-CN 0,1468 нм (для CH 3 CN). Нитрильная группа обладает отрицательными мезомерным и индукционным эффектами, в частности, константы Гаммета σ M = 0,56; σ n = 0,66; σ n - = 1,00; σ n + = 0,659, а индуктивная константа Тафта σ * = 3,6.

Электронное строение нитрилов можно изобразить в виде двух резонансных структур:

В ИК-спектрах и спектрах комбинационного рассеяния нитрильная группа имеет полосу поглощения в районе 2220-2270 см -1 .

Физические и химические свойства

Нитрилы являются жидкими или твёрдыми веществами. Они растворяются в органических растворителях. Низшие нитрилы хорошо растворяются в воде, но с увеличением их молярной массы растворимость в воде падает.

Нитрилы способны вступать в реакции как с электрофильными реагентами по атому азота, так и с нуклеофильными реагентами по атому углерода, что обусловлено резонансной структурой нитрильной группы. Неподелённая электронная пара на атоме азота способствует образованию комплексов нитрилов с солями металлов, например, с CuCl, NiCl 2 , SbCl 5 . Наличие нитрильной группы приводит к снижению энергии диссоциации связи C-H у α-углеродного атома. Связь C≡N способна присоединять другие атомы и группы.

\mathsf{RCN \xrightarrow{HX} X^- \xrightarrow[-HX]{H_2O} \xrightarrow{}RCONH_2 \xrightarrow[-NH_3]{H_2O} RCOOH}

Гидролиз нитрилов в щелочной среде даёт соли карбоновых кислот.

\mathsf{RCN \xrightarrow{R"OH, HX} X^- \xrightarrow[-NH_4^+]{NH_3} RC(OR")\text{=}NH \xrightarrow{H_2O} RCOOR" + NH_3}

При действии на нитрилы сероводорода образуются тиоамиды RC(S)NH 2 , при действии аммиака, первичных и вторичных аминов - амидины RC(NHR")=NH, при действии гидроксиламина - амидоксимы RC(NH 2)=NOH, при действии гидразона - амидогидразоны RC(NH 2)=NNH 2 .

\mathsf{RCN + R"MgX \xrightarrow{} RC(R")\text{=}NMgX \xrightarrow[-MgX_2, -NH_4X]{H_2O, HX} RR"CO}

Нитрилы реагируют с ненасыщенными соединениями (реакция Риттера) с образованием замещённых амидов:

\mathsf{(CH_3)_2C\text{=}CH_2 + CH_3CN \xrightarrow{H^+} CH_3CONHC(CH_3)_3}

Восстановление нитрилов идёт постадийно до образования первичных аминов . Чаще всего реакцию проводят водородом на платиновом, палладиевом (при 1-3 атм. 20-50 °C) или никелевом, кобальтовом катализаторах (100-250 атм., 100-200 °C) в присутствии аммиака. В лабораторных условиях нитрилы восстанавливают натрием в этаноле , алюмогидридом калия и борогидридом натрия :

\mathsf{RCN \xrightarrow{[H]} RCH\text{=}NH \xrightarrow{[H]} RCH_2\text{-}NH_2}

Реакция нитрилов с карбонильными соединениями по Кнёвенагелю ведёт к цианоалкенам:

\mathsf{RCH_2CN + R"RCO \rightleftarrows R"R C\text{=}C(CN)R}

Получение

Нитрилы получают следующими способами:

Дегидратацией амидов, альдоксимов, аммониевых солей карбоновых кислот \mathsf{CH_3COONH_4 \xrightarrow{^ot} CH_3CN + 2H_2O} Алкилированием солей синильной кислоты \mathsf{C_2H_5I + KCN \rightarrow C_2H_5CN + KI} \mathsf{C_6H_5Cl + CuCN \rightarrow C_6H_5CN + CuCl} По реакции Зандмейера \mathsf{Cl^- + KCN \rightarrow C_6H_5CN + N_2 + KCl} Присоединением синильной кислоты (используется в промышленности) \mathsf{CH_2\text{-}CH_2 + HCN \rightarrow CH_3CH_2CN} \mathsf{RCHO + HCN \rightarrow RCH(OH)CN} Совместным окислением аммиака и углеводородов (окислительный аммонолиз)

Реакция протекает при 400-500 °C, катализаторами служат молибдаты и фосфомолибдаты висмута , молибдаты и вольфраматы церия и др.:

\mathsf{CH_2\text{=}CHCH_3 + NH_3 \xrightarrow[-H_2O]{O_2, ^ot} CH_2\text{=}CHCN} Окислением аминов \mathsf{C_6H_5CH_2NH_2 \xrightarrow[-2H_2]{NiO_2, 300-350^ot} C_6H_5CN}

Воздействие на организм человека

Нитрилы ядовиты для человека вследствие нарушения действия цитохромоксидазы и угнетения функции переноса кислорода из крови к клеткам. Токсическое действие проявляется как при вдыхании паров нитрилов, так и при попадании в организм через кожу или желудочно-кишечный тракт.

Токсичность нитрилов увеличивается с ростом длины углеводородного радикала и степени разветвлённости углеродной цепи. Ненасыщенные нитрилы токсичнее, чем насыщенные.

Применение

Нитрилы используются в качестве растворителей, инициаторов радикально-цепной полимеризации , сырья для получения мономеров, лекарственных средств, пестицидов , пластификаторов. Имеют широкое применение в реакции Риттера как нуклеофильный реагент.

Напишите отзыв о статье "Нитрилы"

Примечания

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М .: Советская энциклопедия, 1992. - Т. 3 (Мед-Пол). - 639 с. - ISBN 5-82270-039-8 .
  • О. Я. Нейланд. Органическая химия. - М .: Высшая школа, 1990. - 751 с. - 35 000 экз. - ISBN 5-06-001471-1 .
  • Зильберман Е.Н. Реакции нитрилов. - Москва: Химия, 1972. - 448 с.
  • Новый справочник химика и технолога. Радиоактивные вещества. Вредные вещества. Гигиенические нормативы / Редкол.: Москвин А. В. и др.. - СПб. : АНО НПО «Профессионал», 2004. - 1142 с.

См. также

Отрывок, характеризующий Нитрилы

Как только Наташа, сидевшая у изголовья князя Андрея, узнала о приезде княжны Марьи, она тихо вышла из его комнаты теми быстрыми, как показалось княжне Марье, как будто веселыми шагами и побежала к ней.
На взволнованном лице ее, когда она вбежала в комнату, было только одно выражение – выражение любви, беспредельной любви к нему, к ней, ко всему тому, что было близко любимому человеку, выраженье жалости, страданья за других и страстного желанья отдать себя всю для того, чтобы помочь им. Видно было, что в эту минуту ни одной мысли о себе, о своих отношениях к нему не было в душе Наташи.
Чуткая княжна Марья с первого взгляда на лицо Наташи поняла все это и с горестным наслаждением плакала на ее плече.
– Пойдемте, пойдемте к нему, Мари, – проговорила Наташа, отводя ее в другую комнату.
Княжна Марья подняла лицо, отерла глаза и обратилась к Наташе. Она чувствовала, что от нее она все поймет и узнает.
– Что… – начала она вопрос, но вдруг остановилась. Она почувствовала, что словами нельзя ни спросить, ни ответить. Лицо и глаза Наташи должны были сказать все яснее и глубже.
Наташа смотрела на нее, но, казалось, была в страхе и сомнении – сказать или не сказать все то, что она знала; она как будто почувствовала, что перед этими лучистыми глазами, проникавшими в самую глубь ее сердца, нельзя не сказать всю, всю истину, какою она ее видела. Губа Наташи вдруг дрогнула, уродливые морщины образовались вокруг ее рта, и она, зарыдав, закрыла лицо руками.
Княжна Марья поняла все.
Но она все таки надеялась и спросила словами, в которые она не верила:
– Но как его рана? Вообще в каком он положении?
– Вы, вы… увидите, – только могла сказать Наташа.
Они посидели несколько времени внизу подле его комнаты, с тем чтобы перестать плакать и войти к нему с спокойными лицами.
– Как шла вся болезнь? Давно ли ему стало хуже? Когда это случилось? – спрашивала княжна Марья.
Наташа рассказывала, что первое время была опасность от горячечного состояния и от страданий, но в Троице это прошло, и доктор боялся одного – антонова огня. Но и эта опасность миновалась. Когда приехали в Ярославль, рана стала гноиться (Наташа знала все, что касалось нагноения и т. п.), и доктор говорил, что нагноение может пойти правильно. Сделалась лихорадка. Доктор говорил, что лихорадка эта не так опасна.
– Но два дня тому назад, – начала Наташа, – вдруг это сделалось… – Она удержала рыданья. – Я не знаю отчего, но вы увидите, какой он стал.
– Ослабел? похудел?.. – спрашивала княжна.
– Нет, не то, но хуже. Вы увидите. Ах, Мари, Мари, он слишком хорош, он не может, не может жить… потому что…

Когда Наташа привычным движением отворила его дверь, пропуская вперед себя княжну, княжна Марья чувствовала уже в горле своем готовые рыданья. Сколько она ни готовилась, ни старалась успокоиться, она знала, что не в силах будет без слез увидать его.
Княжна Марья понимала то, что разумела Наташа словами: сним случилось это два дня тому назад. Она понимала, что это означало то, что он вдруг смягчился, и что смягчение, умиление эти были признаками смерти. Она, подходя к двери, уже видела в воображении своем то лицо Андрюши, которое она знала с детства, нежное, кроткое, умиленное, которое так редко бывало у него и потому так сильно всегда на нее действовало. Она знала, что он скажет ей тихие, нежные слова, как те, которые сказал ей отец перед смертью, и что она не вынесет этого и разрыдается над ним. Но, рано ли, поздно ли, это должно было быть, и она вошла в комнату. Рыдания все ближе и ближе подступали ей к горлу, в то время как она своими близорукими глазами яснее и яснее различала его форму и отыскивала его черты, и вот она увидала его лицо и встретилась с ним взглядом.
Он лежал на диване, обложенный подушками, в меховом беличьем халате. Он был худ и бледен. Одна худая, прозрачно белая рука его держала платок, другою он, тихими движениями пальцев, трогал тонкие отросшие усы. Глаза его смотрели на входивших.
Увидав его лицо и встретившись с ним взглядом, княжна Марья вдруг умерила быстроту своего шага и почувствовала, что слезы вдруг пересохли и рыдания остановились. Уловив выражение его лица и взгляда, она вдруг оробела и почувствовала себя виноватой.
«Да в чем же я виновата?» – спросила она себя. «В том, что живешь и думаешь о живом, а я!..» – отвечал его холодный, строгий взгляд.
В глубоком, не из себя, но в себя смотревшем взгляде была почти враждебность, когда он медленно оглянул сестру и Наташу.
Он поцеловался с сестрой рука в руку, по их привычке.
– Здравствуй, Мари, как это ты добралась? – сказал он голосом таким же ровным и чуждым, каким был его взгляд. Ежели бы он завизжал отчаянным криком, то этот крик менее бы ужаснул княжну Марью, чем звук этого голоса.
– И Николушку привезла? – сказал он также ровно и медленно и с очевидным усилием воспоминанья.
– Как твое здоровье теперь? – говорила княжна Марья, сама удивляясь тому, что она говорила.
– Это, мой друг, у доктора спрашивать надо, – сказал он, и, видимо сделав еще усилие, чтобы быть ласковым, он сказал одним ртом (видно было, что он вовсе не думал того, что говорил): – Merci, chere amie, d"etre venue. [Спасибо, милый друг, что приехала.]
Княжна Марья пожала его руку. Он чуть заметно поморщился от пожатия ее руки. Он молчал, и она не знала, что говорить. Она поняла то, что случилось с ним за два дня. В словах, в тоне его, в особенности во взгляде этом – холодном, почти враждебном взгляде – чувствовалась страшная для живого человека отчужденность от всего мирского. Он, видимо, с трудом понимал теперь все живое; но вместе с тем чувствовалось, что он не понимал живого не потому, чтобы он был лишен силы понимания, но потому, что он понимал что то другое, такое, чего не понимали и не могли понять живые и что поглощало его всего.
– Да, вот как странно судьба свела нас! – сказал он, прерывая молчание и указывая на Наташу. – Она все ходит за мной.
Княжна Марья слушала и не понимала того, что он говорил. Он, чуткий, нежный князь Андрей, как мог он говорить это при той, которую он любил и которая его любила! Ежели бы он думал жить, то не таким холодно оскорбительным тоном он сказал бы это. Ежели бы он не знал, что умрет, то как же ему не жалко было ее, как он мог при ней говорить это! Одно объяснение только могло быть этому, это то, что ему было все равно, и все равно оттого, что что то другое, важнейшее, было открыто ему.
Разговор был холодный, несвязный и прерывался беспрестанно.
– Мари проехала через Рязань, – сказала Наташа. Князь Андрей не заметил, что она называла его сестру Мари. А Наташа, при нем назвав ее так, в первый раз сама это заметила.
– Ну что же? – сказал он.
– Ей рассказывали, что Москва вся сгорела, совершенно, что будто бы…
Наташа остановилась: нельзя было говорить. Он, очевидно, делал усилия, чтобы слушать, и все таки не мог.
– Да, сгорела, говорят, – сказал он. – Это очень жалко, – и он стал смотреть вперед, пальцами рассеянно расправляя усы.
– А ты встретилась с графом Николаем, Мари? – сказал вдруг князь Андрей, видимо желая сделать им приятное. – Он писал сюда, что ты ему очень полюбилась, – продолжал он просто, спокойно, видимо не в силах понимать всего того сложного значения, которое имели его слова для живых людей. – Ежели бы ты его полюбила тоже, то было бы очень хорошо… чтобы вы женились, – прибавил он несколько скорее, как бы обрадованный словами, которые он долго искал и нашел наконец. Княжна Марья слышала его слова, но они не имели для нее никакого другого значения, кроме того, что они доказывали то, как страшно далек он был теперь от всего живого.

Нитрилы кислот носят еще название цианидов, так как их можно рассматривать как соединение углеводородного радикала с цианогруппой Обычно названия нитрилов производятся от названий соответствующих кислот:

Свойства. Простейшие нитрилы - жидкости с довольно приятным запахом, имеющие температуру кипения несколько ниже, чем соответствующие кислоты. Мало ядовиты, в отличие от чрезвычайно ядовитой синильной кислоты которую можно рассматривать как нитрил муравьиной кислоты. Простейшие нитрилы плохо растворимы в-воде.

Нитрилы - нейтральные вещества. При гидролизе в присутствии кислот или щелочей образуют амиды кислот (с одной молекулой воды) или свободные карбоновые кислоты (с двумя молекулами воды):

При восстановлении нитрилов водородом (в момент выделения) образуются первичные амины:

Способы получения. О получении нитрилов взаимодействием галоидных алкилов с солями синильной кислоты, а также путем отнятая молекулы воды от амидов кислот мы уже упоминали (стр. 67 и 146). Первый из этих способов имеет важное значение для получения карбоновых кислот из галоидных алкилов. В этом случае получаются карбоновые кислоты с большим числом углеродных атомов, чем в исходном галоидном алкиле. Так; например, для получения пропионовой кислоты следует исходить из бромистого этила:

Акрилонитрил Жидкость с темп. кип. 78 Является важным исходным продуктом для получения синтетических каучуков, пластических масс и синтетических волокон, а также для синтеза, других производных акриловой кислоты.

В промышленности акрилонитрил получается тремя основными методами.

1. Получение из окиси этилена и синильной кислоты:

2. Получение из ацётилена и синильной кислоты:

Для получения акрилонитрил а этим методом сначала смешивают ацетилен с цианистым водородом (12:1) и образовавшуюся смесь, нагретую до 80 °С, под небольшим давлением подают в реактор, в котором находится катализатор - подкислённый раствор однохлористой меди, хлористых натрия и калия. Из образовавшейся парогазовой смеси акрилонитрил полностью поглощается далее водой в абсорбционной колонне. Выход акрилонитрил а около 85%, считая на исходный ацетилен.,

3. Прямой синтез из пропилена и аммиака:

Процесс проводится в аппаратах колонного типа при 450 °С и давлении около в присутствии паров воды. В качестве окислителя применяется кислород воздуха. Избыток аммиака в парогазовой смеси нейтрализуется серной кислотой. Акрилонитрил и побочные продукты реакции поглощаются водой; водный раствор подвергается ректификации.

Этот способ получения акрилонитрила являетеся наиболее экономически выгодным и перспективным, вследствие чего два первых способа развиваться в дальнейшем не будут.



Top